Vision for a Delayed-mode Highresolution Marine Meteorology Data Center

Shawn R. Smith

Center for Ocean-Atmospheric Prediction Studies Florida State University www.coaps.fsu.edu/RVSMDC

Overview

- Brief history of research vessel (R/V) data center at FSU
- Vision for assembly, quality control, distribution, and archival of high-resolution (HR) meteorology
- Role of data assembly center (DAC)
- Contribution by U. S. sponsored HR vessels
- Benefits to HR vessels

History: Who We Are

- Data center specializing in the quality review of meteorological data collected on research vessels (R/Vs)
 - Focus: high time resolution (1-15 min. intervals) data from automated instrument systems
- We employ quality control procedures developed in-house to create value added data products
- We freely distribute all products to science community and apply them to current scientific problems

History : FSU Data Center

- David M. Legler and James J. O'Brien formed the Data Assembly Center (DAC) for WOCE in 1993
 - Final WOCE archive contains meteorology data from over 439 hydrographic cruises (82% of completed cruises)
- Expanded to include all surface meteorology data from TOGA/COARE
- Experience provided access to R/V data for scatterometer cal/val
- Late1990s, added data from select international, UNOLS, and NOAA R/Vs
 - Currently working with *Ronald Brown* and *Ka'imimoana*
 - VOS-IMET soon

Vision

- Establish data pathway from vessel to user
 - Data collection by ships/institutes
 - Centralized data assembly and product development
 - Distribution to archives and users
- Allow for user input on products

Role of DAC

- The DAC will be the central collection location for delayedmode HR observations
- A primary mission of the DAC will be service to the research community
- Duties of DAC
 - Maintain data pathways, communication
 - QC and reporting
 - Distribution of valueadded products
 - Preparing data for longterm archival

Role of DAC: Data pathways

- Coordinate data and metadata transfer from ship to DAC or institute to DAC (ftp or digital media)
- Establish standard navigation and meteorology data and metadata inputs to DAC (based on scientific needs)

- Open communications for input from/feedback to vessel operators
- Accept data in multiple ship formats
- Maintain a database of U.S. sponsored HR meteorology data

Role of DAC: Quality-Control

- Philosophy is to flag (not remove) suspect data at the parametric level
- A system using both automated and visual data inspection is essential
- Automated flagging
 - Pre-process for realistic ranges, time sequence, etc.
 - Statistical spike/step flagging tool
- VIDAT (VIsual Data Assessment Tool) software developed in-house
 - Visualize multiple data streams
 - Map positions/climatologies
 - Check automated flagging
 - Analyst adds additional flags

Role of DAC: QC data flow

- Original data/documentation combined into single file (netCDF)
- Output from each QC process (flags) combined into data quality report
- Report and value-added data (with flags) released to public

Role of DAC: Automated QC

 Spikes, steps, suspect values identified (flagged)

- Examines difference in near-neighbor values
- Flags based on threshold derived from observations
- Graphical Representation
 - Identifies flow conditions with severe problems
 - Flags plotted as function of ship-relative wind
 - % flagged in each wind bin on outer ring
- Analyst determines range of data to autoflag

Role of DAC: QC visual inspection

- Identifies
 systematic errors
 (e.g., severe flow
 distortion, sensor
 heating, and
 acceleration
 errors)
- Finds problems

 and features that
 are unique to new
 system
 deployments
- In time, common problems can be automated

Role of DAC: Distribution

- Primary product: value-added (flagged) meteorology data and QC reports
- DAC should accept input from users to define multiple output formats
- A variety of delivery services (ftp, http, DODS, digital media) should be supported

Role of DAC: Archival

- Prepare subsets of HR marine data in formats used by global marine data archives (e.g., I-COADS)
 - One-minute data (blue) provide too much detail when compared to standard marine observations
 - Three (green) or six (purple) hourly subset lack desired content.
 - Hourly subset (red) provide a good compromise
- Establish regular submission to national archive center (e.g., NODC, NCDC)

Input to DAC

• A commitment is essential from:

- Institutes/Agencies operating HR instrument systems
 - Regular data transfer
 - Detailed and up-to-date metadata
 - Maintain instruments and operate under all atmospheric conditions
- Funding agencies
 - Vessels: Resources are needed to keep systems calibrated and operational
 - DAC: dedicated funding will allow continuous service to research community

Input to DAC: Data

• Timely data transfer improves overall data quality

 If QC is performed soon after cruise, sensor problems can be identified/reported before significant erroneous data are collected

Limited by data acquisition method (R/V vs. VOS)

Clearly documented data format also essential

- Need not be common across fleet
- Cuts QC time, speeds distribution

Input to DAC: Metadata

- Accurate metadata are essential for scientific application of marine observations
 - Detailed metadata should include:
 - instrument height, location, and sensor type; units; direction conventions; time averaging period and method; ship ID; cruise ID (when available); and the facility providing data
- Agreed upon minimum metadata must be sent with data and updated as needed

Benefits to HR vessels

- Broad dissemination of scientifically valuable data
 One stop shopping for researchers
 Inclusion of observations in widely used resources (e.g., I-COADS)
- Feedback on data quality, identifying instrument problems before they propagate into future data
- Historical record of data collection efforts (deep archival)

Final Comments

 Much of the needed expertise and tools are available at FSU to establish a delayed-mode DAC

Implementation:

- Start with a subset of U.S. vessels from willing institutes
- Add vessels at a rate determined by funding, etc.
- Other underway data (SST, SSS, bathymetry) should be considered