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General Applications
• Research vessel observations can be found in many regions of the globe, 

sampling a very wide range of conditions, which is ideal for all the many 
applications.

• Modeling of surface turbulent fluxes (or radiation if it is measured).
• Coupled with observations of surface turbulent fluxes (or co-located 

satellite data) the data are useful for evaluating and improving models of 
surface turbulent fluxes. 

• Comparison of time integrated fluxes to numerical weather prediction 
climate products. 

• Comparison to routine VOS data and assessment of quality of quality of 
VOS data.

• Calibration or validation of satellite instruments. 
• Interpretation of errors in satellite data.

• Useful for estimating naturally occurring noise in observations.
NEW!

NEW!



Center for Ocean-Atmospheric Prediction Studies
The Florida State University

HRMM 2nd Workshop
April 2004 3

http://coaps.fsu.edu/~bourassa/
bourassa@coaps.fsu.edu

Ocean’s TKE Based on Observed Surface Fluxes

Eddy Correlation Inertial Dissipation

Bulk Methods
Calculations by 
Derrick Weitlich

Clayson & Kantha
model

Bulk Method
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Flux Model Evaluation with ASTEX
(Buoy Observations)

Smith et 
al.

Wu

Taylor & 
Yelland

0.010 1.02±0.000.880.94

0.009 0.88±0.000.880.94

0.010 1.04±0.000.880.94

RMSSloper2r

Calculations by 
Yoshi Goto
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Observed Surface Stresses
• Preliminary data form the 

SWS2 (Severe Wind 
Storms 2) experiment.
• The drag coefficients 

for high wind speeds 
are large and plentiful.

• The atypically large 
drag coefficients are 
associated with rising 
seas

• Many models overestimate 
these fluxes.

• Excellent empirical fit to 
means of these data and 
many other by P.K. Taylor 
& M. Yelland (2001).
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Evaluations Using SWS2 
Ship and Buoy Observations

0.0950.73±0.030.930.96Smith et 
al.

0.0830.76±0.040.930.97Wu

0.0990.72±0.030.920.96Taylor & 
Yelland

RMSregressionr2r
All Data

Stress < 0.5 N/m2

0.0510.82±0.010.850.92Smith et 
al.

0.0420.89±0.020.880.94Wu

0.050.83±0.010.840.92Taylor & 
Yelland

RMSSloper2r

Calculations by 
Yoshi Goto
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Understanding Physics Via Differences in 
Remotely Sensed and In Situ Data

In areas of strong currents, Uscat – Ubuoy will be dominated by the current. 
Areas with strong currents are often known, or can be identified in time 
series (Cornillon and Park 2001, GRL; Kelley et al. 2001, GRL).

Remaining mean differences in Uscat – Ubuoy are expected to be dominated 
by wave-related variability in zo(u∗) or ambiguity selection errors.

• Problems related to ambiguity selection and dealing with vectors can be 
bypassed by comparing observed backscatter to the backscatter 
predicted by buoy observations (Bentamy et al. 2001, JTech).
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Comparison of Backscatter Residuals 
To Wave Parameters

• Differences between observed and predicted (based on observed winds) 
backscatter are correlated with various wave parameter (Bentamy et al. 2001,
JTech).
• Significant wave height (the height of the 1/3 tallest waves)
• Orbital velocity
• Significant wave slope

• Orbital velocity and significant slope are highly correlated.

0.190.150.310.288 to10

0.200.330.410.326 to 8

0.180.330.380.324 to 6
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Orbital 
Velocity

Sig. Wave
Height

Wind Speed
(m/s)

Correlation Coefficients
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Differences Between In Situ and Satellite 
Observations Could be Due to Physics

• Surface stress modeling and QSCAT-derived stresses
• Modeling surface stress for storm winds (Bourassa 2004 ASR)
• Direct retrieval of surface turbulent stress from scatterometer backscatter
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Evaluations of Surface Fluxes 
in Climatologies

• Quality processed R/V AWS data are ideal for evaluation of global 
reanalysis fluxes (e.g., Smith et al., 2001, J. Climate).

• Sampling rates allow accurate estimation of 6 hourly integrated fluxes.
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Where are the Problems:
Algorithm or Data

• NCEP fluxes are compared to 
fluxes calculated from R/V data.
• Fluxes calculated with Smith

(1988) parameterization.
• The triangles indicate a large 

bias that has a substantial 
dependence on wind speed.

• Alternatively, fluxes can be 
calculated from the model 
winds, SST, air temperature, and 
atmospheric humidity (circles).
• Much weaker dependence 

on wind speed.
• Still a substantial bias.
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Evaluation of VOS Observation:
VOSCLIM

• Accuracies of VOS observations are not as well characterized as desired.
• Wind biases have been studied in relatively great detail.

• Lindau (1995)
• CFD Modeling of flow distortion (Peter Taylor et al.)

• Biases in SST have also been
examined.

• Biases in air temperature and
atmospheric humidity are far less
well know (Liz Kent).

• Air temperature biases are expected
to be a function of radiative heating
and ventilation.
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Changes With Time As An 
Indication of Quality

• Spikes, steps, suspect values 
identified (flagged)
• Examines difference in 

near-neighbor values
• Flags based on threshold 

derived from observations
• Graphical Representation

• Identifies flow conditions 
w/ severe problems

• Flags plotted as function of 
ship-relative wind

• % flagged in each wind bin 
on outer ring

• Differences between ship and scatterometer 
could be used to examine flow distortion.



Center for Ocean-Atmospheric Prediction Studies
The Florida State University

HRMM 2nd Workshop
April 2004 14

http://coaps.fsu.edu/~bourassa/
bourassa@coaps.fsu.edu

R/V Data for Scatterometer Validation
Co-location Criteria

• Automated Weather Systems
• e.g., IMET
• Observations interval is 5 to 60s
• Record all parameters needed to calculate equivalent-neutral  

earth-relative winds

• Co-location Criteria
• Maximum temporal difference of 20 minutes (usually <30s).
• Maximum spatial difference of 25 km (usually <12.5km).

• Quality control includes checks for 
• Maneuvering (ship acceleration),
• Apparent wind directions passing through superstructure.

• Details in Bourassa et al. (2003 JGR)
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Collocations with R/V Atlantis
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Collocations with R/V Oceanus
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Collocations with R/V Polarstern
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Wind Speed Validation (QSCAT-1 GMF)
• Preliminary results

• 2 months of data
• Observations from 

eight research vessels
• <25 km apart,

<20 minutes apart.
• Uncertainty was 

calculated using PCA, 
assuming ships and 
satellite make equal 
contributions to 
uncertainty.

Likely to be 
unflagged rain 
contamination
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Wind Direction Validation
• Preliminary results

• Same conditions as 
the previous plot.

• Correctly selected 
ambiguities are within 
45° of the green line or 
the corners.
• Red dashed lines 

indicates 180°
errors.

• Yellow dashed lines 
indicate 90° errors.

• Statistics are for 
correctly selected 
ambiguities.
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R/V Atlantis Preliminary Comparison

• Preliminary comparison to R/V Atlantis was much better than typical.
• Uncertainties of 0.3 m/s and 4° (a factor of 4 or 5 better than average).

• Possible explanations include a small sample, and
• All but one co-location was <5 km.
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Variance in Speed

There have been several 
retrieval algorithms with 
different rain flags.

Ku2000 from Remote 
Sensing Systems.
QSCAT-1 from JPL.

Wind speed variance (i.e., 
uncertainty squared) 
decreases with decreasing 
co-location distance.

Spatial Difference in Co-Location (km)
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Variance in Direction

• Variance (uncertainty 
squared) in direction also 
decreases as co-location 
distance decreases.

• Taylor’s hypothesis can be 
used to estimate the spatial 
scale to which extrapolation 
can be justified.
• The optimum spatial scale 

is between 5 and 7 km.
• This distance has been 

confirmed in the signal to 
noise ratio from 
backscatter (David Long, 
pers. Comm, 2003).Spatial Difference in Co-Location (km)
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Natural Variability In 
Scatterometer Observations

• Examine how much noise in scatterometer winds is due to natural variability 
in surfaces winds.
• Versus variability (noise) due to the retrieval function.
• Will naturally variable winds be a serious problem for finer resolution 

scatterometer winds???
• Antenna technology has progressed to the point where a 1 or 2km 

product could be produced from a satellite in mid earth orbit.
• Current scatterometer wind cells are 25x25km from low earth orbit.
• There is a lot of atmospheric variability on scales <25km.

• The different looks within a vector wind cell do not occur at the same time or 
location. The winds can and do change between looks.

• These changes can be thought of as appearing as noise in the observed 
backscatter. When individual footprints are averaged over sufficient 
space/time (space in this case), the variability due to smaller scale processes 
can be greatly reduced.
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The Approach
• Taylor’s hypothesis is used to convert a spatial scale (e.g., 25, 20, 15, 

10, 5, and 2km) to a time scale.
• Time scale = spatial scale / mean wind speed.

• A maximum time scale of 40 minutes is used.
• The non-uniform antenna pattern is considered.

• The weighting in space (translated to time) is equal to a 
Gaussian distribution, centered on the center of the footprint, 
and dropping by one standard deviation at the edge of the 
footprint.

• Mean speeds and directions are calculated, and differences are 
calculated for temporal differences of 1 through 20 minutes.
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Example of Variability in 60s Averages
for Various Difference In Time

• Variance in wind speed differences (m2s-2) as a function of the 
difference in time (minutes) for individual observations (one minute 
averages).

0 to 4 ms-1

4 to 8 ms-1

8 to 12 ms-1

12 to 16 ms-1

16 to 20 ms-1
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Examples for 25km footprints

• Standard deviation in wind speed differences (left; ms-1) and directional 
differences (right; degrees) as a function of the difference in time 
(minutes).

• High wind speeds have more variability in speed, but less so in direction.
• Directional variability for low wind speeds is very sensitive to the 

differences in time.
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Examples for 20km footprints

• Standard deviation in wind speed (left; ms-1) and direction (right; degrees) as 
a function of the difference in time (minutes).
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Examples for 15km footprints

• Standard deviation in wind speed (left; ms-1) and direction (right; degrees) as 
a function of the difference in time (minutes).



Center for Ocean-Atmospheric Prediction Studies
The Florida State University

HRMM 2nd Workshop
April 2004 29

http://coaps.fsu.edu/~bourassa/
bourassa@coaps.fsu.edu

Examples for 10km footprints

• Standard deviation in wind speed (left; ms-1) and direction (right; degrees) as 
a function of the difference in time (minutes).

• Odd features are creeping into the directional analysis for high wind speeds, 
presumably due to insufficient temporal resolution of the ship data.



Center for Ocean-Atmospheric Prediction Studies
The Florida State University

HRMM 2nd Workshop
April 2004 30

http://coaps.fsu.edu/~bourassa/
bourassa@coaps.fsu.edu

Examples for 5km footprints

• Standard deviation in wind speed (ms-1) as a function of the difference 
in time (minutes).

• Speeds, for large wind speeds, are highly sensitive to the differences in 
observation time.

• For lower wind speeds, the spatial differences in sampling dominate 
the uncertainty in speed.
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Conclusions
• There are many applications for high resolution in situ observations.

• Improving flux modeling
• Validation of climatologies
• Quality assessment of VOS observations
• Validation of satellite observations
• Planning new earth observing satellites

• The satellite related applications would benefit from observations with a 
sampling rate greater than once per minute.

• Wave data and radiation data would be extremely useful for flux modeling.


