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I. Motivation 
 
        To complete my second year in MATMECA, Engineering school, I did my internship at 

the Center for Ocean-Atmospheric Predictions Studies (COAPS, Florida State University) from 

June to September 2008, in Tallahassee, the state capital of Florida, USA. 

         COAPS performs research in air-sea interaction, ocean and coupled air-sea modeling, 

climate prediction, statistical studies, and predictions of social/economic consequences due to 

ocean-atmospheric variations. Students in COAPS come from a wide variety of departments 

including meteorology, mathematics, computer science, and physical oceanography. COAPS 

has provided the perfect opportunity for me to complete an internship and a science project, 

being captivated by the oceanic and atmospheric phenomena.

   When ocean tidal currents encounter undersea topography, waves called internal tides are 

generated.  Internal waves are ubiquitous in stratified aquatic environments. These waves 

propagate into the ocean interior and can contribute significantly to the oceanic mixing and the 

large-scale circulation when they break (Munk and Wunsch, 1998), influencing how energy is 

transported throughout the ocean. Recently, a numerical study by Simmons et al [2006], showed 

that the global ocean circulation is very sensitive to this tidally driven mixing. However, many 

open issues still remain on the mixing induced by the internal wave breaking process.  

The generation and propagation properties of the internal wave are sensitive to subtle 

variations of the ocean stratification, tidal forcing amplitude, and topography, especially on rough 

topography (i.e. oceanic ridges, trenches, seamount, continental shelves, etc…). At such locations, 

the dynamic of an internal wave can be strongly non-hydrostatic and thus cannot be well-resolved 

in Oceanic General Circulation Models (OGCMs) that usually make the hydrostatic 

approximation. This study aims towards a better understanding of how internal wave are 

generated particularly at a continental shelf, which is considered as a very rough topography in the 

ocean. In order to do so, numerical experiments are conducted using the HYbrid Coordinate 

Ocean Model (HYCOM). 

The internal waves generated at a continental shelf affects a wide variety of other domains 

such as local ecosystems (by distributing and transporting nutrients), sediment transport, oil 

production companies, and submarines navigation. 
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 First, I present a brief review on the equation of motion that described the oceanic and 

atmospheric circulation with a particular interest on the internal wave theory. In a third section, 

I present analytical and numerical calculations of internal wave generation over a continental 

shelf. Results and discussion are presented in a fourth section. 
 
II. Theoretical Background  

 
a. Description of the Navier-Stokes equation 

 

The geophysical fluid dynamics is the study of naturally occurring oceanic and 

atmospheric flows. Without its atmosphere and oceans, our planet will not be able to sustain 

life. Seventy percent of the Earth's surface is covered by the ocean. Conditions at the sea have 

influenced human activities like exploration, commerce, fisheries and wars. 

All of us, scientists, engineers, and the public are becoming increasingly concerned 

about the dispersion of pollutants in the environment like, and especially about their cumulative 

effect.  When the accumulations of greenhouse gases in the atmosphere will lead to global 

climatic changes? What are the various roles played by the oceans in maintaining our present 

climate? These questions could be partly answered by a better understanding of atmospheric 

and oceanic dynamics, through the use of observational datasets and numerical models. For 

example, geophysical fluid dynamics helps us predict the paths of hurricanes, which allow us to 

save many human lives.  

The most important equation in geophysical fluids dynamics that describe flow motion 

is the Navier-Stokes equation given by (1).  
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Where:  1 is the acceleration of a water parcel 

             2 is Coriolis force 

             3 is the pressure gradient term 

             4 are the voluminal forces 

             5 are the viscous forces 
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The water parcel acceleration (term 1) is defined by an unsteady acceleration plus a non linear 

term, the convective acceleration. In an incompressible flow, the term  
r 

U •∇
r 

U  equals 0.  Some 

forces act upon the water parcel such as the Coriolis force (term 2) which depends on the 

velocity of the moving fluid and the angular velocity (due to the rotation of the Earth). The 

right hand side of the equation is a summation of the pressure gradient (term 3),  the body 

forces such as the tides, the atmospheric forcing vF
r

 (term 4) and conventionally U
r

Δμ  (term 5) 

describes viscous forces and for incompressible flow, this is only a shear effect. 

 
b. Internal wave theory  
 Internal waves occur in stably stratified fluids when a water parcel is displaced by some 

external force and is restored by buoyancy forces. Then the restoration motion may overshoot the 

equilibrium position and set up an oscillation thereby forming an internal wave that will 

propagate. Figure 1 shows observed internal waves generated at the Strait of Gibraltar. They have 

been studied by several groups of researchers in geophysical fluid dynamics, acoustics ocean 

optics, sediment transport, plankton advection and vertical mixing.  

 

Figure 1: Example of surface signature of internal waves (wavelength about 2 km) which seem to 

move from the Atlantic Ocean to the Mediterranean Sea, at the east of Gibraltar and Ceuta. 
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Usually, internal waves have much lower frequencies and higher amplitudes than the 

surface gravity waves because the density differences within fluid are generally smaller than the 

density of the fluid itself. The typical horizontal length scale of internal waves is of the order 1 to 

100 km. 

 A classic paper by Munk and Wunsch  [1998] showed that the dissipation of these 

waves by turbulence could be responsible for half of the energy to mix the ocean and maintain the 

strength of the meridional overturning circulation. Thus, knowledge of the internal wave breaking 

process is key to understanding the global climate system.  

Packets of nonlinear internal waves have been observed throughout the world, primarily 

on continental shelves. One important internal wave generation mechanism comes from the 

interaction between rough topography and the semi-diurnal barotropic tide. Thus, these waves are 

generated with a tidal period of 12.421 hour period. Their time scale of their propagation is from 

minutes to days with a horizontal velocity of 0.05 m.s-1 to 0.5 m.s-1. 

In a non-rotating environment, the internal wave dispersion relation for a uniformly 

stratified fluid is governed by: 
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The general solution has the following form: )exp( tiimzikxAw ω−+=  (3) 

Where x and z are respectively the horizontal and vertical coordinate, N is the buoyancy 

frequency, w is the vertical velocity, A is a constant, k and m are respectively the horizontal and 

vertical wave numbers, ω   the tidal frequency, t the time. 

The tidal frequency has the following form: ω 2 = f 2m2 + N 2k 2( )/ k 2 + m2( ) (4) 

From (2), we can clearly see that the propagation of an internal wave depends only on the tidal 

forcing frequency, on its geographic latitude and on how the water changes density with depth. 
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III. Analytical solution of internal wave generation over a continental shelf 
  
a. Description of the analytical configuration  
 

In this section, we present the analytical solution of the interaction of an internal wave 

with an idealized continental shelf described in Griffiths and Grimshaw [2007]. We assume 

that the problem is two-dimensional, that the fluid is divided in two layers of different densities 

and finally that we have a free surface.  

The topography is defined as follow:  

 

h(x) = hL for x < xL

h(x) ≈ hL 1− 1−
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   (5) 

where hL is the depth on the shelf, hR is the depth of the deep ocean, xL and xR  are respectively 

the abscissa of the shelf break and the deep ocean (See Figure 2). The length of the shelf slope 

is  and the length of the shelf isLRS xxL −= CC xL = . 

 

 
 

Figure 2: schematic of the analytical model configuration. 
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b. General solution 

 

The flow is governed by the following equations: 
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   where u and w are respectively the velocity in the x and z directions 

        ˜ ρ  is the density deviation from the density background state (ρ0) 

         p is the pressure deviation from the  pressure background state 

         f is the Coriolis parameter 

         g is the acceleration due to the gravity 

 

The tidally forced baroclinic mode equation is written as: 

 

d2

dx2 +
ω f

2

c1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ˆ U 1 = −

d2

dx2
1+ (x − xL ) /LC

1+ LS /LC

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

c1
2

c∞
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥                       (10) 

the resulting barotropic zonal velocities are given by: 
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Where  is the transport,  is the baroclinic mode 1 forcing, cQ 1Û 1 is the wave speed for the 

baroclinic mode 1 and is defined as 
2/1

1 1 ⎟
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ρgdc , d representing the 

depth of the first layer. In order to find an exact solution to this analytical problem, we suppose 

that c1 can be rewritten as: 
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c1 = cL + (cR − cL )(x − xL ) /LS     (12) 

 

Griffiths and Grimshaw [2004] have introduced an non-dimensional parameter, , which 

describes the steepness of the slope: 

1s
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At the free surface, using the boundary conditions )(xhz −= , and 0=• nu rr
 , we solve (7-9) 

and we obtain: 
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where ζ represents the linearized vertical particle displacement. 

Thus we can also write: 
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For our study, the slope is abrupt, that means 0=
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 (because ), then, we can obtain 

the interface displacement thanks to the following expression: 
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Where k is the wavenumber defined by
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For , the vertical particle displacement is given by: RL xxx <<
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The interface displacement can be observed in the schema in the below. 
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Figure 2: Interface displacement (a) for )/()/log(1 πLR ccs =  and (b) for ( )π2/)/log(1 LR ccs = , 
with  5.0/,8.0/ == LRL hdcc
 
 
The energy fluxes JL and JR are defined at the abscissa xL and xR corresponding respectively to the 

abscissa of the shelf break and the deep ocean. We choose a constant ratio 7.0≈
R

L

c
c

, and see the 

dependence of the energy fluxes as a function of the steepness parameter,  (Figure 3). The 

energy fluxes at the shelf break are given by the expression: 
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JJLL

 
 
                                                                                                                      Low energy fluxes  
 
Figure 3: Non-dimensional energy fluxes for the exact two-layer solution at , 
vertical dotted lines represent the low energy fluxes. 

7.0/ =RL cc

 
 

Figure 3 shows that as the slope steepness increases, the energy fluxes increase. Indeed, if 

we pose 
3
1

>
R

L

c
c

, the forcing term in the equation (12) increase monotonically over the entire 

slope with the ratio 
C

S

L
L

. As a result, the energy fluxes given by equation (16) also increase. 

However, for smaller  (s1s 1 < 0.05), the dominant behavior appears to be related to a more local 

dynamic. For example, when , we notice that  increases when s1 > 0.05 LJ
C

S

L
L

increases, while 

when ,  and decrease when s1 = 0.015 LJ RJ
C

S

L
L

increases.  

 

In addition to these results, Figure 3 shows low energy fluxes for particular values of s1. 

These low energy fluxes are predicted across the slope as a function of the change in phase 

(vertical gray dashed lines), namely θΔ  defined as:  
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where k x( )=
ω f

c1(x)
is the wave number when we assume that the phase of the internal mode 

varies rapidly compare with the slope. Indeed, low values of are observed when LJ πθ n2=Δ ,  

with n=1,2,3,4 for the first four predictions. On the contrary, when Δθ = 2n −1( )π , there is strong 

wave propagation away from the slope and the resulting energy flux is high. LJ

The physical explanation is: when πθ n2=Δ , the waves reach the slope after completing a full 

period. However, waves with phase Δθ = 2n −1( )π  break on the slope before finishing a full 

cycle of oscillation and thus generate a lot of energy. There is also a direct interplay between the 

energy fluxes and the vertical interface displacement. As Figure 2 shows us, for 

)2/()/log(1 πLR ccs = , internal waves are more located at the shelf break. However, for 

π/)/log(1 LR ccs = , they are more spread on the coastline and the deep ocean. 

 

We will now conduct several numerical simulations with HYCOM to evaluate the model 

for the same configuration and parameters as in the analytical solution. 

 
IV. Comparison of numerical simulations against analytical solutions 
 

 

Ocean models can provide an experimental apparatus for the scientific rationalization of 

ocean phenomena, and allow us to have a better understanding and prediction of aspects of the 

ocean. Different kind of numerical models are used for large-scale studies (global models) as 

well as small scale studies (high resolution near coastal area), and from few days processing 

(tides) to centuries (ocean current).  

One way to sort out the different models is by their respective approach of vertical coordinate 

treatments: 

• The z-coordinate models, traditionally used in global ocean climate models, divide the water 

column in fixed level from the surface (z=0) to the bottom of the topography (z=-H). 
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• Terrain-following-coordinate models, generally used for the coastal applications, use fixed 

levels defined as:                

ζ
ζσ

+
−

=
H
z  

 
          Where ),,( tyxζ  is the displacement of the ocean surface from its resting position z=0 and 

z=-H(x,y) the bottom topography. 

 

• The last ones are the isopycnal coordinate (ρ-coordinate) models referenced to a given 

pressure. These models are inherently adiabatic and accept arbitrarily steeply sloped 

topography. 

 

A main disadvantage in z- and σ -coordinate models is the apparition of a spurious diapycnal 

mixing due to the numerical advection schemes that can not maintain adiabatic properties of a 

water parcel. The σ –coordinate models also have gradient error computation at steep slope. Also, 

all of these models is that they use a single coordinate type to represent the water column but not 

a single one can by itself be optimal everywhere in the ocean. This is why many developers have 

been motivated to pursue research into hybrid approaches, which is the subject of the following 

subsection. 

 

a. The Hybrid Coordinate Ocean Model (HYCOM) 

 

The HYbrid Coordinate Ocean Model (HYCOM) is the result of collaborative efforts 

among the University of Miami, the Naval Research Laboratory (NRL) and the Los Alamos 

National Laboratory (LANL) and combines all the three vertical discretization seen in the 

previous section. For HYCOM, this vertical coordinate system is showed Figure 4. 
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Figure 4: Description of the z-, ρ-, and hybrid coordinates of HYCOM. 
  

HYCOM behaves like a conventional sigma model in very shallow and/or unstratified 

oceanic regions, like a z-level coordinate model in the mixed layer or other unstratified regions, 

and like an isopycnic-coordinate model in stratified regions. In doing so, the model combines the 

advantages of the different types of coordinates in optimally simulating coastal and open-ocean 

circulation features. In our study, HYCOM is run in a fully isopycnal mode to have a controlled 

diapycnal mixing. 

 

b. Model configuration 

 

For this study, we use the version 2.2 of HYCOM, on a rectangular basin configuration with 

312m horizontal resolution, 2 isopycnal layers (layer 1 and 2 of potential density 24.77 kg.m-3 and 

26.40 kg.m-3 respectively), no bottom friction to isolate the tidal energy conversion, closed east 

and west boundaries. The model is forced with a barotropic tide of varying frequency [2.229x10-6 

s-1, 3.3435 x10-4 s-1] at the eastern boundary and we impose a constant ratio cL

cR

= 0.745. Outputs 

are saved every hour to avoid tidal aliasing. The model reaches a stable energy state after a day 

and a half and energetic computations are made between 6 and 10 tidal cycles. The topography is 

defined by equation (5) with the particular values: hL=200m, hR=2000m, xL = 100km, and xR= 

200km, thus Ls=100km. 
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c. Results 

 

We compute the energy fluxes at the shelf break (xL) for each simulation and plot them as a 

function of the steepness parameter (Figure 5). In order to compare to the analytical solution we 

compute the low energy phases and find for which value of the steepness parameter we should have 

low energy fluxes. The baroclinic energy fluxes are computed using equation (16). 

 

 
Figure 5: Depth integrated energy fluxes (red crosses) averaged over 1 tidal cycle at xL as a 
function of the steepness parameter (s1) for 1.0/ =RL hh  and 1/ =CS LL  for each simulation. 
Vertical blue dashed line represents the expected low energy fluxes ( πθ n2=Δ ). 
 
We can see high-energy regime in the vicinity of small s1. However, for s1 >0.2, the energy 

strongly decreases. For some specific values of s1 (0.09, 0.2) it appears that there is a drop in the 

energy fluxes, these low energy phases well correlate with the predicted one (Figure 5). The 

energy fluxes are in the order of 1x107 W.m-2 which is a common energy magnitude for this type 

of problem (Venayagamoorthy, 2006; Hibiya, 2004).  
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V. Discussion 
It seems that HYCOM is well representing the energetic of the internal wave since the 

locations of the low energy fluxes are well correlated to the analytical solution. There are, however, 

few differences from the theory, mainly that the location of the low energy fluxes is shifted. We try 

to discuss these issues in this section.  

In order to have our interested range of value of s1 we have varied the tidal frequency forcing 

between very high (2.229x10-6 s-1) and low frequency (3.3435 x10-4 s-1). Since we are saving the 

output only every hour, an aliasing in the sampling could lead to errors for small s1. This problem 

could be easily resolved by running again the experiment and saving the output with a much higher 

frequency. The problem could also arise from the numerical model itself. Indeed, HYCOM could 

slightly have an error on representing the wave speed and/or wavelength. This will lead to a shift in 

the location of the low energy fluxes, an example would be at s1=0.02. 

  The analytical solution only takes into account one baroclinic mode while the model is in fact 

resolving two. Indeed, HYCOM was run with 3 layers for technical purposes with 2 layers with 

almost equal density (the density gradient between the two is of the order 10-4). This issue could be 

resolved by having an analytical solution that considers a ‘real’ stratification with a full layered 

ocean. 

When we consider higher value of the steepness parameter it seems that the energy slowly 

decreases. This is a direct influence of the depth of the shelf compare to the depth of the deep ocean 

as well as the coastline effect. This ratio is constant for us ( 1.0/ =RL hh ) and has a direct impact on 

controlling the propagation shoreward or oceanward. The smaller the ratio is the fastest this decrease 

on the energy fluxes arises. For example, if  5.0/ =RL hh  then the decrease will occur at s1= 0.9 

(Griffiths and Grimshaw, 2007). This is coming from the fact that the barotropic forcing decreases as 

the length of the shelf slope increases (see equation (11) for more details). 

This study shows that with few numerical experiments conducted, HYCOM seems to represent 

well the behavior of strong internal wave (in a supercritical regime). However, a significant 

drawback is the sparse sampling. With more time, new configurations should be conducted in order 

to have a full view of the energy fluxes pattern as a function of the steepness parameter. The main 

improvement would also be to have a more realistic view of this problem and thus extend the 

problem to a full layered ocean. 
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 VI. Conclusions 
In this study we have conducted idealized numerical simulations of internal wave generation 

over a continental shelf in a 2-layers ocean with HYCOM. We compare the results to the analytical 

solution derived by Griffiths and Grimshaw [2007]. The results are promising since internal wave 

low energy fluxes seem to be well represented in the model. We believe that HYCOM is very 

successful on representing the generation and propagation of the internal wave at abrupt slope. The 

observed shifts in these locations could arise from an aliasing problem, from a lack of numerical 

experiment, as well as the model itself that could slightly misrepresent the internal wave propagation 

(wavelength, wave speed). This study would benefit from further development such as providing a 

real stratification as well as adding more numerical simulations. 
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