New Features of HYCOM

Alan J. Wallcraft Naval Research Laboratory

14th Layered Ocean Model Workshop

August 22, 2007

HYCOM 2.2 (I)

- Maintain all features of HYCOM 2.1
 - Orthogonal curvilinear grids
 - Can emulate Z or Sigma or Sigma-Z models
 - It is "Arbitrary Lagrangian-Eulerian", see: Adcroft and Hallberg, O. Modelling 11 224-233.
 - Explicit support for 1-D and 2-D domains
 - KPP or Kraus-Turner or Mellor-Yamada 2.5 or Price-Weller-Pinkel
 - Rivers as bogused surface precipitation
 - Multiple tracers
 - Off-line one-way nesting
 - Scalability via OpenMP or MPI or both
 - o Bit-for-bit multi-cpu reproducibility

HYCOM 2.2 (IIa)

• Alternative LeapFrog barotropic time splitting

- Provided by SHOM
- Twice as expensive as standard scheme
 - ♦ Still a small fraction of total run time
- Significantly more stable
- May allow 2x longer baroclinic time step
- Alternative scalar advection techniques
 - Provided by Mohamed Iskandarani
 - Donor Cell, FCT (2nd and 4th order), MPDATA
 - FCT2 replaces MPDATA as standard scheme
- Vertical coordinate changes
 - Vertical remapping uses PLM for fixed coordinate layers
 - Thin deep iso-pycnal layers
 - Stability from locally referenced potential density
 - Spatially varying layer target densities
 - Oifferent isopycnal layers in semi-enclosed seas

HYCOM 2.2 (IIb)

• Equation of state that is quadratic in salinity

- HYCOM must "invert" the equation of state
 tofsig(r,s) and sofsig(r,t)
- \circ Traditional version is cubic in T and linear in S
 - Finding the root of a cubic is expensive, but exact
 - Linear in S is not accurate at low salinity
- \circ Optional version is cubic in T and quadratic in S
 - Coefficients provided by Shan Sun
 - Over the second seco
 - · Rivers, Black Sea, Caspian Sea
 - Not much more expensive

• Pade equation of state

- \circ Optional Pade version: P_{22}/Q_{11}
 - $\diamond P_{22}$ is quadratic in T and S
 - $\diamond Q_{11}$ is linear in T and S
- Developed at NCEP
 - Only Sigma0 at present
- More accurate at low salinity

- Special halo exchange for tripole global grid
 - Arctic dipole patch on standard Mercator globe
 - Logically rectangular domain
 - Two halves of top edge "fold" together
 - \diamond V-velocity changes sign across the fold
- Improved thermobaricity
 - No single reference state is appropriate for the global ocean
 - ◊ Hallberg, Ocean Modelling, 8, 279-300
 - Use a linear combination of pressure gradients from two out of three reference states
 - \diamond Atlantic (3°C, 35.0 psu)
 - \diamond Arctic/Antarctic (0°C, 34.5 psu)
 - ◊ Mediterranean (13°C, 38.5 psu)
 - Most locations use just one reference state
 - Linear combinations allow smooth transition between states
 - \cdot Do this in shallow water if possible
 - In deep water, constrain the T&S used for thermobaricity to be close to the reference state

HYCOM 2.2 (IIIa)

- Mixed layer changes
 - GISS mixed layer model
 - Provided by Armando Howard
 - KPP bottom boundary layer
 - ◇ Provided by George Halliwell
 - KPP tuning
- Atmospheric forcing changes
 - Option to input ustar fields
 - Sest option for monthly forcing
 - Otherwise calculated from wind stress or speed
 - Can relax to observed SST fields
 - Improved COARE 3.0 bulk exchange coefficients
 - Black-body correction to longwave flux
 - \circ Climatological heat flux offset, \overline{Q}_c

$$Q = (Q_{sw} - Q_{lw}) + (Q_l + Q_s) + \overline{Q}_c$$

- $\diamond \, \overline{Q}_c$ is constant in time
 - \cdot Typically based on the model's climatological SST error, times (say) -45 $Wm^{-2}/^{\circ}C$

HYCOM 2.2 (IIIb)

- Improved support for rivers
 - Still bogused surface precipitation
 - High frequency inter-annual river flow allowed
 - Add it to atmospheric precip, off-line
 - Instead of monthly climatology, or in-addition to it (flow anomalies)
 - Better control of low salinity profiles
 - Option for mass (vs salinity) flux
 - Equation of state that is quadratic in salinity

• Tidal forcing

- Provided by NCEP
- Body forcing and open boundary forcing
- Boundary forcing currently for "Flather" ports
 - Extend it to Browning-Kreiss ports and nesting
- Tidal drag based on bottom roughness
 - Presently applied to total near-bottom velocity
 - · Can we apply this to tidal signal only?

HYCOM 2.2 (IIIc)

• I/O optimizations

- I/O can be a bottleneck when running on many processors
 - ◊ MPI-2 I/O option
 - Saster code for "endian" conversion
- Remove density from restart and archive files
 - ◊ Less I/O, smaller files
 - Aust track which equation of state is used

• New diagnostics within HYCOM

- Time-averaged fields (in archive files)
 - Identical to off-line mean archives
 - No on-line capability to capture variability
 - Instantaneous archives still available
- Synthetic instrumentation
 - Provided by George Halliwell
 - ◊ 3-D particle tracking
 - surface and constant depth drifters
 - ◊ isopycnic drifters
 - o fixed instruments and moorings

- Finer control over energy loan ice model
 - Melting point can be linear in salinity
 - Set ice minimum and maximum thickness
 - Set ice vertical temperature gradient
 - \diamond Or get ice surface temperature from T_a
 - Made compatible with coupled sea-ice approach

• Two-way coupling to LANL's CICE sea ice model

- HYCOM exports:
 - \diamond SST, SSS, SSH
 - ◊ Surface Currents
 - Available Freeze/Melt Heat Flux
- CICE exports:
 - ◊ Ice Concentration
 - ◊ Ice-Ocean Stress
 - Actual Freeze/Melt Heat/Salt/Mass Flux
 - ◊ Solar Radiation at Ice Base
- Coupling via the Earth System Modeling Framework

HYCOM AND ESMF

- Earth System Modeling Framework http://www.esmf.ucar.edu/
 - Superstructure couples components
 - ◊ Air/Ocean/Ice/Land
 - Asynchronous I/O component
 - · Run "concurrent" with model components
 - Infrastructure provides data structures and utilities for building scalable models

• Added a superstructure "cap" to HYCOM

- Simplifies coupled systems
 - \diamond HYCOM coupled to LANL CICE sea-ice
- Future uses
 - ◊ Use ESMF for (user-level asynchronous) I/O
 - Convert atmospheric field processing and the energy-loan ice model into ESMF components
 - Inter-operate with other ESMF compliant ocean models (e.g. Poseidon, MITgcm, MOM4)
- This initial ESMF support is optional
 - TYPE=esmf instead of TYPE=mpi
- ESMF may eventually be required to run HYCOM

HYCOM AND CCSM

- Community Climate System Model http://www.ccsm.ucar.edu/
 - Fully-coupled, global climate model
 - Sea-Ice: CICE
 - Ocean: POP

• HYCOM can be used in place of POP in CCSM3

- Only tested at NCAR on an IBM p575+ (blueice), for the gx1v3 domain with ocean as the only active component
- Uses the standard HYCOM source code
- Subdirectory CCSM3 used to hold and build the CCSM3 version
 - Some source code files are specific to CCSM3
 - HYCOM ".f" files are renamed ".F" to simplify CCMS3 integration
 - Macro USE_CCSM3 for CCSM3-specific code

HYCOM 2.2 (IV)

- Climatological nesting now allowed
 - Start from monthly mean outer model archive files
 - Allows nested runs longer than the outer run
 - ♦ But with less accurate boundary state
 - Probably only suitable for regional nests
- Nesting no longer requires co-located grids
 - General archive to archive horizontal interpolation (curvilinear)
- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains
 - ♦ HYCOM to (fixed-grid) HYCOM
 - ♦ HYCOM to NCOM

- Enhanced hycomproc and fieldproc
 - NCAR-graphics based
 - Many more color palette options
 - Can read in an arbitrary palette
 - Mark locations, and draw tracks, on plot
 - Plot diffusion coefficients and tracers (hycomproc)
 - Overlay vector and line-contours (fieldproc)
- Added fieldcell
 - Like fieldproc, but for cell-array (vs contouring)
 - Ark locations and draw tracks
 - Overlay line-contours
 - Uses NCAR's map projections
 - Typically much faster than fieldproc, but can leave unfilled cells
 - Option to increase resolution of input (bi-linear interpolation)

- Diagnostic fields to netCDF and other file formats
 - Archive fields in layer space
 - On p-grid (interpolated velocity)
 - 3-D archive fields interpolated to z-space
 - \diamond On p-grid, or
 - Sampled at stations or along arbitrary tracks
 - 3-D archive fields sampled on iso-therms
 - Meridional stream-function from (mean) 3-D archive
 - In logical array space (rectilinear grids)
 - Binned to latitude bands (curvilinear grids)
 - Atmospheric forcing input fields
 - Time axis depends on ".b" file format
 - Any ".a" file with the right ".b" file structure can be converted to netCDF
 - Fields binned into lon-lat cells

WETTING AND DRYING

- Current free surface formulation
 - Assumes the free surface is a small fraction of the total depth
 - Includes steric effects, but does not exactly conserve either mass or volume
 - \diamond Not satisfactory for coastal domains
 - Replaces dp with dp' nearly everywhere
 - Simplifies split-explicit time step
- Mass conserving formulation
 - Remove the dp' "equals" dp approximation
 - Could still archive dp' (for compatibility)
 - Allows wetting and drying
 - Almost for "free", given HYCOM's existing numerics
 - Already implemented in SHOM variant of HYCOM
 - Will be in HYCOM 2.3
- Mass conservation also allows:
 - E-P and rivers as a mass flux
 - Already approximately available via "epmass" option

OTHER CANDIDATE FEATURES FOR HYCOM 2.3

- Fully region-independent
 - Compile once, run on any region and any number of processors
 - Run-time memory allocation
 - Might reduce performance (fewer compiler optimizations available)
 - Needed for full ESMF compliance
- Enhanced support for ESMF
- More hybgen options
 - Add PQM remaping
 - Use PLM or PQM for "isopycnal" layers
- Diurnal heat flux cycle
 - Already in CCSM3 version
- Wind drag coefficient based on model SST