Evaluation and validation of the 1/12° global HYCOM system

Joe Metzger1, Harley Hurlburt1, Alan Wallcraft1, Ole Martin Smedstad2, Birol Kara1, Jay Shriver1, Lucy Smedstad1, Prasad Thoppil2 and Debbie Franklin3.

1Naval Research Lab,
2University of Southern Mississippi
3Planning Systems, Inc.

2007 Layered Ocean Model Workshop
20-22 August 2007
Bergen, Norway
1/12° HYCOM/NCODA/PIPS

Delivery:

• Scheduled for transition to the Naval Oceanographic Office (NAVOCEANO) by the end of 2007
• Operational testing to begin in 2008

Capability:

• Provide accurate 3D temperature, salinity and current structure
• Depict the location of mesoscale features such as oceanic eddies and fronts

Progress:

• 1/12° global HYCOM/NCODA running in real-time in the NAVOCEANO operational queues since 22 Dec 2006
• Produces daily 5-day hindcast up to the nowcast time, then a 4-5 day forecast
• Graphical and digital output available through the HYCOM consortium web pages: http://www.hycom.org

Issues:

• Complete coupling (with ice edge assimilation) of HYCOM/PIPS via ESMF
1/12° Global HYCOM Configuration

- Horizontal grid: 1/12° equatorial resolution
 - 4500 x 3298 grid points, ~6.5 km spacing on average, ~3.5 km at pole
- Mercator 79°S to 47°N, then Arctic dipole patch
- Vertical coordinate surfaces: 32 for σ_2^*
- KPP mixed layer model
- Thermodynamic (energy loan) sea-ice model
- Surface forcing: FNMOC NOGAPS 0.5° wind stress, wind speed, thermal forcing, and NOGAPS 1.0° precipitation
- Monthly river runoff (986 rivers)
-Initialized from January climatology (GDEM3) T and S, then SSS relaxation from PHC 3.0
 - No subsurface relaxation to climatology
HYCOM/NCODA Verification Experiments

• Hindcast simulations:
 • 11/2003 - 03/2007: results from 2004-2006 used in this presentation
 • Some of this output is on the HYCOM consortium LAS
 • Second simulation was recently started in 12/2004 and will run through the end of 2005 or 2006
 • Changes to the model code (increased timestep)
 • NCODA assimilation globally
 • NCODA analysis cycle runs at 18Z
HYCOM/NCODA Runstream

Valid
nowcast time

<table>
<thead>
<tr>
<th>00Z</th>
</tr>
</thead>
</table>
| ![Diagram](image)

NCODA analysis windows centered at these times
±36 hours for altimeter data
±12 hours for all other data

1) Perform first NCODA analysis centered on tau = -120
2) Run HYCOM for 24 hours using incremental updating () over the first 6 hrs
3) Repeat steps 1) and 2) until the nowcast time
4) Run HYCOM in forecast mode out to tau = 96, eventually to tau = 120

Approximate run times* (using 379 IBM Power 5+ processors):
1) Six NCODA analyses: 0.9 hrs/analysis = 5.4 hrs
2) Five HYCOM hindcast days @ 150 sec Δt: 1.1 hrs/day = 5.5 hrs
3) Four HYCOM forecast days @ 150 sec Δt: 1.1 hrs/day = 4.4 hrs
4) Total: 15.3 hrs

* Timings do not include PIPS coupling; assimilation in the Mercator part of grid only
FY07 Validation Tasks

A. Large scale circulation features
 • Determine correct placement of large scale features

B. Sea Surface Height (SSH) variability / Eddy Kinetic Energy (EKE)
 • Determine if the system has a realistic level and distribution of energy at depths

C. Mixed layer depth / sonic layer depth / deep sound channel
 • Compare simulated vs. observed for non-assimilated buoys

D. Vertical profiles of T&S
 • Quantitative comparison of simulated vs. observed for non-assimilated buoys

E. Sea surface temperature
 • Evaluate whether the models are producing acceptable nowcasts and forecasts of sea surface temperature

F. Coastal sea level
 • Assess the model’s ability to represent observed sea surface heights
A. Large scale circulation features

1992-2002 mean dynamic ocean topography (0.5°)

Mean ocean dynamic topography data obtained from Nikolai Maximenko (IPRC) and Peter Niiler (SIO)
A. Large scale circulation features

2004-2006 mean sea level from 1/12° global HYCOM/NCODA

From the 1/12° global HYCOM/NCODA hindcast simulation
Mean shifted by 8.7 cm; standard deviation of difference = 9.6 cm
B. SSH Variability

SSH variability over 1993-2006 from MODAS

SSH variability over 2004-2006 from the HYCOM/NCODA hindcast simulation
B. Surface EKE in the Gulf Stream

1/8° Navy Coastal Ocean Model (NCOM) - 1/32° Navy Layered Ocean Model (NLOM) - 1/8° Modular Ocean Data Assimilation System (MODAS)
B. EKE at 700 m in the Gulf Stream

Observations from Schmitz (1996)
C. Mixed Layer Depth (MLD) Evaluation

2005 MLD Median Bias (MdB): HYCOM vs. unassimilated MEDS profiles

MLD = depth where the temperature is reduced by 0.5°C from the surface value
Based on 28,509 profiles

MdB: -9.0 m, RMSE: 33.5 m, 34% have |MdB| < 10 m
C. Mixed Layer Depth (MLD) Evaluation

2005 MLD Median Bias (MdB): NCOM vs. unassimilated MEDS profiles

MLD = depth where the temperature is reduced by 0.5°C from the surface value
Based on 28,509 profiles

MdB: -3.0 m, RMSE: 29.5 m, 42% have |MdB| < 10 m
C. Sonic Layer Depth (SLD) Evaluation

Target diagrams – Model vs. unassimilated 2005 MEDS profiles

HYCOM

MdB: -17.0m, RMSE: 39.9 m

NCOM

MdB: -10.0m, RMSE: 31.9 m

SLD = near surface sound speed maximum
D. Vertical Temperature Structure

Locations of TAO and PIRATA buoys used in this evaluation

Buoys are divided into two sets based on the vertical sampling and continuity of the time series over calendar year 2004

East (denoted by o’s): 1, 20, 40, 60, 80, 100, 120, 140, 180, 300, 500 m.
West (denoted by x’s): 1, 25, 50, 75, 100, 125, 150, 200, 250, 300, 500 m.
D. Vertical Temperature Structure

2004 subsurface temp at 140°W, 2°N

Temperature difference

Significant impact of temperature profile assimilation via NCODA
D. Vertical Temperature Structure

2004 subsurface temp at 140°W, 2°N

Temperature difference

Buoy

HYCOM

NCOM

2004-02N140W : NCOM 02F - BUOY

2004-02N140W : HYCOM 604 ASSIMILATED - BUOY

2004-02N140W : HYCOM EXPT 604 - ASSIMILATED

Black = assimilation white = no assimilation
D. Vertical Temperature Structure

RMSE – 47 TAO/PIRATA buoys 2004
Buoy vs. HYCOM
Buoy vs. NCOM

[Graph showing vertical temperature structure for West and East]
D. Vertical Temperature Structure

Skill score – 47 TAO/PIRATA buoys 2004
Buoy vs. HYCOM
Buoy vs. NCOM

Skill score based on correlation, conditional and unconditional bias.
E. Sea Surface Temperature

Mean error – HYCOM vs. MODAS

white area = ± 0.25°C

Over 2004-2006 from the HYCOM hindcast simulation
E. Sea Surface Temperature

Skill score – HYCOM vs. MODAS

Over 2004-2006 from the HYCOM hindcast simulation
E. Sea Surface Temperature

Unassimilated MEDS SST vs. HYCOM vs. NCOM

Over 2004 from the HYCOM hindcast simulation and operational NCOM

<table>
<thead>
<tr>
<th></th>
<th>HYCOM</th>
<th>NCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>-.1°C</td>
<td>.2°C</td>
</tr>
<tr>
<td>RMSE</td>
<td>.9°C</td>
<td>2.2°C</td>
</tr>
<tr>
<td>R</td>
<td>.99</td>
<td>.93</td>
</tr>
<tr>
<td>SS</td>
<td>.98</td>
<td>.86</td>
</tr>
</tbody>
</table>
Simulated vs. observed sea level at 148 coastal / island stations during 2004

Correlation
- HYCOM vs. Obs.
 - Median $r = 0.74$
- NCOM vs. Obs.
 - Median $r = 0.74$

RMSE
- HYCOM vs. Obs.
 - Median RMSE = 6.9 cm
- NCOM vs. Obs.
 - Median RMSE = 6.8 cm
FY08 Validation Tasks

A. Below layer depth gradient
 - Compare simulated vs. observed for non-assimilated buoys

B. Comparison with drifting buoys
 - Evaluate the model’s ability to produce ocean currents that yield drifter
 and ARGO float trajectories similar to observations

C. Current cross sections
 - Evaluate model velocity cross-sections through qualitative and
 quantitative comparisons

D. Provide boundary conditions to nested models
 - Nest East Asian Seas NCOM and Relocatable NCOM within HYCOM
 and compare inner model with the solution when forced NCOM

E. Eddy tracking
 - Evaluate the model’s ability to track mesoscale eddies

F. Ice drift, thickness and concentration
 - Assess the model’s ability to represent sea ice
HYCOM/PIPS Coupling via ESMF

- PIPS = Polar Ice Prediction System: based on the Los Alamos CICE model
- ESMF = Earth System Modeling Framework
- Testing in a 1/12° Bering Sea (v2.2.03)
- Two-way coupling running robustly
 - HYCOM exports: SST, SSS, surface currents and available freeze/melt heat flux
 - PIPS exports: ice concentration, ice/ocean stress, actual freeze/melt, heat/salt/mass flux and solar radiation at the ice base
- No SSMI ice edge assimilation yet
HYCOM/PIPS Coupling via ESMF

Ice thickness (m) and NIC ice edge (black line)

HYCOM/PIPS HYCOM/E-loan