

An analytic FV pressure gradient discretization for avoiding thermobaric instability

Alistair Adcroft (Princeton Univ.), Robert Hallberg and Matthew Harrison (NOAA/GFDL)

A (Previously Cured) Thermobaric Instability

 Compressibility is *awkward* for Ther layer models (Sun et al., 1999;
 Hallberg 2005)

Approximated EOS

- \rightarrow Wrong water masses
- \rightarrow Numerical problems

Thermobaric instability coupling with ML instability

- Only after model drifts away from climatology.
- Instability starts in interior interface heights
- Expels stratification to the surface where it is more easily destroyed
- Very young ages appear in both Northern and Southern high latitude abyss.

$$\nabla_{p} \Phi_{k}(p) = \nabla_{p} \Phi_{k+\frac{1}{2}} - \int_{p_{k+\frac{1}{2}}}^{p} \underbrace{\nabla_{p} A_{1}(p')}_{=0} dp' - A_{1}(p) \underbrace{\nabla_{p} p}_{=0} + A_{1}(p_{k+\frac{1}{2}}) \nabla p_{k+\frac{1}{2}} \\ \nabla_{p} \Phi_{k+1}(p) = \nabla_{p} \Phi_{k+\frac{1}{2}} - \int_{p_{k+\frac{1}{2}}}^{p} \underbrace{\nabla_{p} A_{2}(p')}_{=0} dp' - A_{2}(p) \underbrace{\nabla_{p} p}_{=0} + A_{2}(p_{k+\frac{1}{2}}) \nabla p_{k+\frac{1}{2}} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\sum_{p=\frac{1}{2}}^{p} \underbrace{\nabla_{p} A_{2}(p')}_{=0} dp' - A_{2}(p) \underbrace{\nabla_{p} p}_{=0} + A_{2}(p_{k+\frac{1}{2}}) \underbrace{\nabla p_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\sum_{p=\frac{1}{2}}^{p} \underbrace{\nabla_{p} A_{2}(p')}_{=0} dp' - A_{2}(p) \underbrace{\nabla_{p} p}_{=0} + A_{2}(p_{k+\frac{1}{2}}) \underbrace{\nabla p_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\sum_{p=\frac{1}{2}}^{p} \underbrace{\nabla_{p} A_{2}(p')}_{=0} dp' - A_{2}(p) \underbrace{\nabla_{p} p}_{=0} + A_{2}(p_{k+\frac{1}{2}}) \underbrace{\nabla p_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} \\ = \underbrace{\nabla_{p} \Phi_{k+\frac{1}{2}}}_{=0} - \underbrace{\nabla_{p} \Phi_{k+\frac{1$$

$$\nabla_{p} \Phi_{k} - \nabla_{p} \Phi_{k+1} = \left[A_{1} \left(p_{k+\frac{1}{2}} \right) - A_{2} \left(p_{k+\frac{1}{2}} \right) \right] \nabla p_{k+\frac{1}{2}}$$

Pressure gradient acceleration (PGA) anywhere within respective layer independent of position within layer

Acceleration difference between layers **should** be due only to gradients of middle interface p_{k+1/2}

Hallberg, OM '05

Bob's thought experiment cont.

The discrete version:

 $PGA_{k} - PGA_{k+1} = \left(\widetilde{\alpha}_{1} - \widetilde{\alpha}_{2}\right)\partial_{x}p_{k+\frac{1}{2}} + \frac{1}{2}\Delta p_{k}\partial_{x}\widetilde{\alpha}_{1} + \frac{1}{2}\Delta p_{k+1}\partial_{x}\widetilde{\alpha}_{2}$ $\approx \left[A_{1}\left(p_{k+\frac{1}{2}}\right) - A_{2}\left(p_{k+\frac{1}{2}}\right)\right]\partial_{x}p_{k+\frac{1}{2}} + \frac{1}{4}\left\{\Delta p_{k+1}\partial_{x}\left(\Delta p_{k+1}\frac{\partial\alpha_{2}}{\partial p}\right) - \Delta p_{k}\partial_{x}\left(\Delta p_{k}\frac{\partial\alpha_{1}}{\partial p}\right)\right\} + \dots$

Compressibility terms!

These compressibility terms cause the acceleration to *spuriously* change when the interface is perturbed

- thermobaric instability
- inherent problem for "Lagrangian" coordinate models

Use of the Exner function analytically incorporates E.O.S.
Recall: spurious compressibility terms vanish if linear E.O.S.
Ocean E.O.S. has no Exner analogue

e.g. Lin, QJRMS '95

Assume piecewise constant θ and s within layer
Assume linear variation of θ and s in horizontal
Use sixth order Bode's rule for top/bottom integrals (tiny error w.r.t. analytic form)
Do series expansion of log and cancel leading terms

The results

 Nordic Sea thermobaric instabilities fixed Age distributions significantly improved

Nordic Seas Interfaces (CORE II)

Ideal age at 2000m in CORE simulations (year 50)

Summary

- Found a simple approach to use "real" E.O.S.
 - (though mathematically challenging)
- Abandoned Montgomery potential in favour of FV method (Φ ,p)
 - No pressure gradient error for
 - Mass/pressure coordinates (p)
 - Geo-potential coordinates (z)
 - Isopycnal coordinates (ρ)
 - Or general coordinates in special cases
 e.g. Linear horizontal θ and s variation
 - PGE occurs only when assumptions used in analytic integration become inappropriate e.g. linear interpolation of θ , s
- Could/should extend to other E.O.S. forms
 Could use higher order representations of θ and s
 within layer
 - in horizontal

