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Basic Idea behind HYPOP
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Proposition (1): Natural vertical coordinate system for the momentum equation is
geopotential (ie, Eulerian z-coordinates).

Proposition (2): Natural vertical coordinate system for continuity and tracer
equations is Lagrangian (eg, Isopycnal).

Thus, solve momentum equation:

on a z-grid, using interpolated pressure     from the Lagrangian grid.  Solve continuity
continuity and tracer equations on a Lagrangian grid using interpolated fluxing velocity

from the Eulerian grid:

It is very desirable to interpolate      and      in an energy-consistent manner.  That is,
The flow of kinetic and potential energy should be consistent between the two grids.

(Note:  The basis for the Eulerian momentum solution is POP, the Los Alamos Boussinesq,
hydrostatic, B-grid model -- Hence, HYPOP.)
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Alternative Approaches to an Energy-Consistent Interpolation
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(Note: Boundary Terms Omitted)
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Basic Idea

1. Eulerian grid Pressure Work and
Pressure Gradient (∆PW & ∆PG) in each
cell are interpolated to the Lagrangian
grid position for each cell (∆PW & ∆PG)

2. Pressure Work and Pressure Gradient 
(∆PW & ∆PG) at Lagrangian cell locations are
taken to be equal to the Pressure Work and
Pressure Gradient on the Lagrangian grid

(∆PW & ∆PG) since they represent the same
quantity at the same location.

3. Lagrangian interpolated fluxing velocity
is obtained for each cell as
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Outline of Procedure:
(A) Pressure Interpolation

p(z){ }⇒ p*(z){ } Pressure, known at Lagrangian interfaces, 
is interpolated to Eulerian interfaces.

Knowing the Eulerian horizontal pressure 
gradient, the pressure work in each column
is calculated as a function of depth.

p* →∇E p
* Knowing the Eulerian pressure, the Eulerian 

horizontal pressure gradient is computed. This 
is what is used in the momentum equation.

PW = u ⋅∇E p
*∫ dz
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Interpolation of pressure in T-Column
(A 1D Remapping Interpolation)
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Note: Pressure interpolation           
preserves mass!
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Pressure Interpolation
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Interpolate Eulerian Pressure Work and Pressure Gradient
to “Local/Horizontal” Lagrangian Grid

(A 1D Remapping)

••
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Note: This is the “correct” interpolated horizontal pressure work             
and pressure gradient  (without σ-error) on the Lagrangian grid

∆PW, 
∆PG {

{∆PW, 
∆PG

Obtain Fluxing Velocity:

What is the corresponding 
Lagrangian continuity 

equation ?
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Velocity Interpolation
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Lagrangian continuity equation

Based on the discrete Lagrangian pressure gradient, the total Pressure Work on the entire grid is
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Rearranging terms within the summation:
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This implies the following form for the conservation of volume and conservation of mass on 
the Lagrangian grid  (not simultaneously valid):
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When mass is conserved (**), the total pressure work may be manipulated to give
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of Internal Energy
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of Total  Energy

In a Boussinesq model, (*) holds but not (**), and so PW does not exactly lead to 
energy conservation.  However, (*) and (**) are consistent, and (*) becomes

the appropriate “ energy-consistent” Boussinesq Lagrangian continuity equation. 
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Is the Interpolated Fluxing Velocity Robust?

Unfortunately, the answer is “No”!

Recall that the velocity interpolation is

u* = u* ⋅∇L p dz
∆zL
∫ ∇L p dz

∆zL
∫

This is an “interpolation” with a non-sign-definite weighting.
It conserves Pressure Work and so is energy consistent, but

it is ill-behaved when                or changes sign.∇L p→ 0

Tests with simple models indicate that bursts of noise occur periodically.
This is not acceptable behavior, and therefore this velocity interpolation is

not acceptable.

There are two options:

(1) Retain energy consistency in the interpolation but change to a different
approach: interpolate PdV or PEX.  This may be feasible but much more
difficult and complicated.

(2) Abandon energy consistency in favor of a simple, thickness-weighted 
interpolation.  Is this a feasible solution?
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Is Energy Consistent Interpolation Necessary?

We noted that an energy-consistent interpolation is highly desirable.  
But is it necessary?

We note the following

• Originally (Bryan, 1969), the requirement for energy consistency arose from a need to 
avoid the non-linear (Phillips) instability.

• Energy exchange (involving the PW and PdV terms) occurs even in linear models of gravity
waves.  Strict energy consistency is usually not required in such models.  The Lax Theorem

states that consistency and stability (related to accuracy) are sufficient.

• Non-linear stability is ensured if advection terms do not contribute to the production of
kinetic energy.  This is easy enough to accomplish and it is completely independent of the 

“energy-consistency” requirement.

Thus, we conclude that energy consistency is probably not necessary for the interpolation 
between grids.  Our preliminary tests with a simple model seem to confirm this.

(See next talk)
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Some Properties of the Two-Grid Interpolation

An interesting property of the two-grid interpolation became apparent during testing:  
If the number of layers in the two grids is different, there
can exist non-physical “null modes” that do not propagate! 

Example:
Eulerian Grid

2 levels
Supports 2 modes:

1 Barotropic
1 Baroclinic

Lagrangian Grid
3 layers

Supports 3 modes:
1 Barotropic
2 Baroclinic

Propagating Lagrangian Mode

Non Propagating Lagrangian Mode

Since the Lagrangian grid has 3 degrees of freedom and the Eulerian grid only 2, there must be one mode on 
the Lagrangian grid that doesn’t couple to the Eulerian grid.  This is the non-propagating mode or the null mode.

The overall model supports only 2 physical modes. 

Lagrangian interface
Eulerian interface

1 Propagating
1 Non Propagating


