

Comparison of GFDL's CM2G Coupled Climate Model with CM2.1 and CM2M

Robert Hallberg, Alistair Adcroft, Matthew Harrison, and Anand Gnanadesikan NOAA/GFDL & Princeton University

Ocean Components of GFDL Coupled Climate Models CM2G(63L)/GOLD

- 1° res. (360x210), on tripolar grid.
- 59 Isopycnal interior layers + 4 in ML ٠
- C-grid discretization ۰
- Split explicit free surface ; fresh water fluxes ٠ as surface B.C.
- 2-layer refined bulk mixed layer with 2 buffer ٠ layers
- Full nonlinear equation of state except for ٠ coordinate definition
- Tracer diffusion rotated to σ_2 surfaces ٠
- Partially open faces allow explicit exchanges ٠ with marginal seas.
- Simmons et al. background diapycnal ٠ diffusion
- Visbeck variable thickness diffusivity. ٠
- Biharmonic Smagorinsky + Resolution scaled ٠ Laplacian viscosity.
- Jackson et al (2008) shear-Richardson number ٠ dependent mixing.
- 1 hour baroclinic timestep, 2 hour tracer & ٠ coupling timesteps
- Continuously variable topography ٠

CM2.1/MOM4.0 or CM2M/MOM4.1

- 1° res. (360x200), on tripolar grid. •
- 50 z- or z*-coordinate vertical levels •
- **B**-grid discretization ٠
- Split explicit free surface ; fresh water fluxes ٠ as surface B.C.
- KPP mixed layer with 10 m resolution down to ٠ 200 m
- Full nonlinear equation of state ٠
- MDPPM tracer advection (CM2M) •
- Tracer diffusion rotated to neutral directions •
- Marginal sea exchanges specified via "cross-٠ land mixing"
- Lee et al. + Bryan-Lewis background (CM2.1) ٠ or Simmons et al. (CM2M) diapycnal diffusion
- Baroclinicity-dependent GM diffusivity. •
- Anisotropic Laplacian viscosity (CM2.1) or • Biharmonic Smagorinsky + Resolution scaled Laplacian viscosity (CM2M)
- KPP specification of interior shear-Richardson • number dependent mixing
- 2 hour baroclinic and coupling timesteps. •
- Partial cell topography ٠

Pacific 2000 dbar Potential Density Surfaces from CM2G

Isopycnal Surfaces at 140°W

-2 - 1 0

1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sea Surface Temperature (°C)

2345

8 7

-2 - 1 0 1

CM2G 100-Year Mean Sea Surface Temperatures Years 101-200 CM2.1 100-Year Mean Sea Surface Temperatures Years 101-200

> 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Sea Surface Temperature (°C)

GFDL

NOAA

Temperature Anomalies (°C)

CM2.1 100-Year Mean Sea Surface Temperature Errors RMS: 1.17°C, 90°S-30°S 1.27°C, 30°S-30°N 0.97°C, 30°N-90°N 1.49°C Years 101-200

-Year Mean Sea Surface Temperature Errors CM2 1 100-Year Mean Sea Surface Temperature

CM2G 100-Year Mean Sea Surface Temperature Errors RMS: 1.18°C, 90°S-30°S 1.31°C, 30°S-30°N 1.01°C, 30°N-90°N 1.41°C Years 101-200

CM2M 100-Year Mean Sea Surface Temperature Errors RMS: 1.28°C, 90°S-30°S 1.49°C, 30°S-30°N 1°C, 30°N-90°N 1.61°C Years 101-200

1982-2001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Sea Surface Temperature (°C)

Annual Average SST Errors

CM2G GOLD: RMS 1.18 K

Differences in CM2G relative to CM2.1:

- Very different northern N. Atlantic
- Much better N. Pacific sea-ice pattern
- Smaller (summertime) Southern
 Ocean warm bias
- Larger cold biases in southern marine stratocumulus regions

Common biases:

- Almost no cooling in upwelling areas
- Warm Southern Ocean
- Equatorial cold tongue too cold.
- North Atlantic Current too zonal.
- Cold bias in N. Pacific subpolar gyre.
- Cold biases in southern subtropics

CM2.1 100-Year Mean Sea Surface Temperature Errors RMS: 1.17°C, 90°S-30°S 1.27°C, 30°S-30°N 0.97°C, 30°N-90°N 1.49°C Years 101-200

CM2M MOM: RMS 1.28 K

Annual Average Sea Surface Salinity Errors

-0.5 -0.25 0.25 0.5

Salinity Anomalies (PSU)

-1.5

-1

1.5

BROAD METRICS OF THE INTERIOR OCEAN STRUCTURE

Global Mean RMS Temperature Errors & Temperature Bias

Year ~190 Temperature Errors at 1000 m Depth

CM2.1 Temperature Errors at 1200 m

Climatology

M2.1

< 0.2 °C white 0.5 °C Contour interval

Vertically Integrated Salinity Bias

Year ~190 Temperature Errors at 4000 m Depth

10°₩

0.6 0.8

40°E

1 1.5 90°E

2

CM2.1

The Strength of the Atlantic Meridional Overturning Circulation

The Strength of the Drake Passage Transport

PACIFIC AND ATLANTIC OCEANS

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 Zonal Mean Pacific Ocean Potential Temperature (°C)

-2 -1 0

2

3 4

56

7 8 9 10 12 14 16

Zonal Mean Atlantic Ocean Potential Temperature (°C)

18 20 22 24

Atlantic Salinity Bias Years 181–200 Anomalies, ~190 Years CM2.1 Atlantic Salinity Bias

5500

0 34.1

80°S 70°S 60°S 50°S

 $34.7 \quad 34.9 \quad 35.1 \quad 35.3 \quad 35.5 \quad 35.7 \quad 35.9 \quad 36.1 \quad 36.3$ 34.3 34.5 Zonal Mean Atlantic Ocean Salinity (PSU)

0°

10°N 20°N 30°N 40°N 50°N 60°N 70°N

36.5 36.7 36.9

40°S 30°S 20°S 10°S

CM2G Atlantic Salinities and Overturning Streamfunctions **CM2.1**

Denmark Strait Topography in CM2.1 and CM2G G

OCCAM Bathymetry (m)

- An excessively deep Denmark Strait sill is ubiquitous in IPCC/AR4 models.
- In CM2G the Denmark Strait and Faroe Bank Channel sill depths are set to agree with observed, although the channels are too wide.

AN IDEALIZED GLOBAL WARMING SIMULATION

Changes after 110 Years in 1% per year CO₂ Runs <u>E</u> CM2G CM2.1

Conclusions

CM2G and CM2M are both viable coupled climate models.

Mean climate:

- Both CM2M & CM2G exhibit similar long-term-mean SST biases to CM2.1 (mostly due to the atmosphere)
- CM2G has clearly superior interior watermass properties, thermocline structure, and AMOC structure.

Climate change:

- Surface warming patterns are similar between CM2G & CM2.1
- CM2G exhibits deeper Atlantic warming than CM2.1
 - Projected sea level rise is likely to be greater in CM2G than CM2.1.

Isopycnal coordinate ocean models have finally become the state-of-the-art for climate studies.

Why use 2 different ocean models to study climate?

- Z- and isopycnal models exhibit different inherent biases.
- The ocean observational record is short, sparse, aliased by eddies, and post-dates a statistically steady state.
- Great uncertainties exist in the ocean's long-term role.
- Biogeochemistry introduces even greater sensitivity to physical biases than does the physical state, along with even greater uncertainty about processes.

Using 2 ocean models gives the equivalent of binocular vision!

SURFACE PROPERTIES SST, SSS, AND SEA-ICE

RMS Errors in Monthly SSTs

100-Year Mean February SST Errors

1982-2001

90°E

Reynolds Climatology

CM2.]

RMS February SST Errors:

- CM2G 1.46°C
- CM2.1 1.84°C
- CM2M 2.00°C

100-Year Mean February Depth to SST - 1°C

60°S

80°3

0 10

120°E

20

150°E

30 40 50

180°

60

150°W

120°W

90"7

Depth to 1°C decrease (m)

60°W

30°W

70 80 90 100 120 140 160 180 200 300 400 500 1000150020002500

0°

30°E

90°E

60°E

100-Year Mean Sea Surface Salinity

CM2.1

CM2.1 100-Year Mean Sea Surface Salinity CM2G 100-Year Mean Sea Surface Salinity Years 101-200 Years 101-200 80°N 80°N 60°N 60°N 40°N 40°N ZO°N ZO°N 01 01 20°S 20°S 40°S 40°S $60^{\circ}\mathrm{S}$ $60^{\circ}S$ 80°S 80°S 100°E 150°E 160°W 11**0°W** 60°W 10°₩ 40°E 90°E 100°E 150°E 160°W 110°W 60°₩ 10°W 40°E 90°E 31 32 32.5 33 33.5 34 34.5 35 35.5 25 27.5 30 31 32 32.5 33 33.5 34 34.5 35 35.5 0 5 10 15 20 22.5 25 27.5 30 36 36.5 37 38 0 5 10 15 20 22.5 36 36.5 37 38 Sea Surface Salinity (PSU) Sea Surface Salinity (PSU)

CM2G

100-Year Mean Sea Ice Concentration

The RMS Annual-Mean SST Error

Long-term Evolution of Annual Mean SST Errors **CM2.1** CM2G

PACIFIC OCEAN

CM2G

CM2G Pacific Potential Temperature Years 181–200 **CM2G** Pacific Potential Temperature Years 181–200 **CM2.1** Pacific Potential Temperature Years 181–200

5500

80°S 70°S

-2

60°S 50°S

2

40°S 30°S

3 4 5

6 7

Zonal Mean Pacific Ocean Potential Temperature (°C)

8 9 10 12 14 16

40°N 50°N 60°N 70°N

18 20 22 24

33.4 33.6 33.8 34 34.2 34.4 34.6 34.8 35 35.2 35.4 Zonal Mean Pacific Ocean Salinity (PSU)

ENSO Statistics for CM2G

ATLANTIC OCEAN

CM2G

G Atlantic Ocean Temperatures, ~190 Years <u>CM2G Atlantic Potential Temperature Years 181–200</u> <u>CM2.1 Atlantic Potential Temperature</u>

80°S 70°S

-2

60°S 50°S

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 Zonal Mean Atlantic Ocean Potential Temperature (°C)

 0°

40°S 30°S 20°S 10°S

10°N 20°N 30°N

40°N 50°N 60°N 70°N

-24

CM2G

Atlantic Salinities, ~190 Years

5500

0 34.1 34.3 34.5

80°S 70°S 60°S 50°S

40°S 30°S 20°S 10°S

0°

 $34.7 \quad 34.9 \quad 35.1 \quad 35.3 \quad 35.5 \quad 35.7 \quad 35.9 \quad 36.1 \quad 36.3$

Zonal Mean Atlantic Ocean Salinity (PSU)

10°N 20°N 30°N 40°N 50°N 60°N 70°N

36.5 36.7 36.9

3500 4000 4500 5000 5500 80°S 70°S 60°S 50°S 40°S 30°S 20°S 10°S 10°N 20°N 30°N 40°N 50°N 60°N 70°N 0° $34.7 \quad 34.9 \quad 35.1 \quad 35.3 \quad 35.5 \quad 35.7 \quad 35.9 \quad 36.1 \quad 36.3$ 0 34.134.3 34.5 36.5 36.7 36.9

Zonal Mean Atlantic Ocean Salinity (PSU)

Excludes most marginal seas

CM2G

500

1000

1500 2000

3000 3500

4000

4500

5000

5500

80°S

Depth (m) 2500

Atlantic Salinity Bias Years 281–300 Anomalies, ~290 Years CM2.1 Atlantic Salinity Bias Years 281–300

5500

0 34.134.3

80°S 70°S 60°S 50°S

 $34.7 \quad 34.9 \quad 35.1 \quad 35.3 \quad 35.5 \quad 35.7 \quad 35.9 \quad 36.1 \quad 36.3$ 34.5 Zonal Mean Atlantic Ocean Salinity (PSU)

0°

10°N 20°N 30°N 40°N 50°N 60°N 70°N

36.5 36.7 36.9

40°S 30°S 20°S 10°S

CM2G

Vertically Integrated Salinity Errors

CM2.1

INDIAN OCEAN

CM2G

G Indian Ocean Temperatures, ~190 Years <u>CM2G Indian Potential Temperature Years 181–200</u> <u>CM2.1 Indian Potential Temperature</u>

5500

80°S 70°S

60°S 50°S

Э

40°S 30°S 20°S 10°S

4 5 6

10°N 20°N

7 8 9 10 12 14 16

0°

Zonal Mean Indian Ocean Potential Temperature (°C)

40°N 50°N 60°N

18 20 22 70°N

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 Zonal Mean Indian Ocean Potential Temperature (°C)

Indian Ocean Salinities, ~190 Years

34 34.2 34.4 34.6 34.8 35 35.2 35.4 35.6 35.8 36 36.2 36.4 36.6 36.8 37 33.2 33.4 33.6 33.8 Zonal Mean Indian Ocean Salinity (PSU)

OVERFLOWS & EXCHANGES

Resolution requirements for avoiding numerical entrainment in descending gravity currents.

Z-coordinate:

Require that $(\Delta z < H_{BBL}/2 \approx 50m)$

AND $(\Delta x < H_{BBL} / 2\alpha \approx 5km)$

to avoid numerical entrainment. (Winton, et al., JPO 1998)

Many suggested solutions for Z-coordinate models:

- "Plumbing" parameterization of downslope flow: Beckman & Döscher (JPO 1997), Campin & Goose (Tellus 1999).
- Adding a separate, resolved, terrain-following boundary layer: Gnanadesikan (~1998), Killworth & Edwards (JPO 1999), Song & Chao (JAOT 2000).
- Add a nested high-resolution model in key locations?

Sigma-coordinate: Avoiding entrainment requires that $(\Delta \sigma D_{Ocean} < H_{BBL})$ **But** hydrostatic consistency requires $(\Delta x < 3\Delta \sigma D_{Ocean} / \alpha)$ $(\Delta x < 3H_{BBL} / \alpha \approx 30km)$

Isopycnal-coordinate: Numerical entrainment is not an issue - BUT

• If resolution is inadequate, no entrainment can occur. Need $(\Delta \rho < \frac{1}{2}(\rho_{Overflow} - \rho_{Ambient}))$

GLOBAL ANOMALY PATTERNS AT FIXED DEPTHS

Year ~190 Temperature Errors at 100 m Depth

CM2.1 Temperature Errors at 100 m

Climatology

CM2.1

< 0.5 °C white 1 °C Contour interval

Year ~190 Temperature Errors at 250 m Depth

CM2.1 Temperature Errors at 250 m

Climatology

M2.1

< 0.5 °C white 1 °C Contour interval

Year ~190 Temperature Errors at 600 m Depth

Climatology

'M2.1

< 0.5 °C white 1 °C Contour interval

Year ~190 Temperature Errors at 1500 m Depth

CM2.1 Temperature Errors at 1500 m

Climatology

M2.1

< 0.2 °C white 0.5 °C Contour interval

Year ~190 Temperature Errors at 2000 m Depth

Climatology

CM2.1

< 0.2 °C white 0.5 °C Contour interval

Year ~190 Temperature Errors at 3000 m Depth

CM2.1 Temperature Errors at 3000 m

Climatology

M2.1

< 0.1 °C white 0.2 °C Contour interval

CM2G

