

California Institute of Technology Pasadena, California

Challenges in Modeling Altimetry SSH and Gravimetry OBP

Contents:

- 1. Altimetry SSH and Gravimetry OBP
- 2. Model development
- 3. Results (bad and good)

OBP is the contribution from SSH and density changes—a difference of two large terms

Λ

$$p_b = p_a + \int_{-H}^{\eta} g\rho dz \approx p_a + g\rho_0 \eta + \int_{-H}^{0} g\rho dz$$

Inverted barometer:

$$\eta^{ib} = -\frac{p_a}{g\rho_0}$$

$$\frac{1}{g\rho_0}\frac{\partial p_b}{\partial t} = \frac{\partial(\eta - \eta^{ib})}{\partial t} - \left(-\frac{1}{\rho_0}\int_{-H}^0\frac{\partial\rho}{\partial t}dz\right)$$

Pasadena, California

GRACE OBP Anomaly

b) Annual phase (GRACE OBP)

Challenges for Ocean Models

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

Altimeters & Model

40

20

0

-20

-40

c) AVISO - Model (SSH)

- 1. The difference between Data and Model is about the variability of data itself in the eddy field.
- 2. Data assimilation can reduce this error, but costly.

GRACE & Model

Chambers & Willis (JGR, 2008)

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

GRACE & (Altimeter-Argo)

Chambers & Willis (JGR, 2008)

Suggested Hybrid Coordinate System

Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

 $p = -(p_b' + p_c)s - (p_b^0 - p_c)C(s)$

[Advances in Geosciences, Song et al. 2009]:

Schematics

California Institute of Technology Pasadena, California

Ocean & Ice

1/4-degree withrotated northpole:

- couple sea-ice
- couple earthquakes
- seafloor deformation
- freshwater flux

Difference in SSH (monthly averaged results)

Space Administration

0⁰

Difference in OBP

Sea-Ice Coverage Errors

Focusing on the North Pacific

Pasadena, California

Focusing on the **North Pacific**

180E

140W

100W

100E

140E

Model(Nev)

California Institute of Technology Pasadena, California

Focusing on the North Pacific

GRACE Reveals North Pacific Oscillation and ENSO Linkage

Song & Zlotnicki, IJRS, Nov. 2008

Problem: The explanation of the GRACE-observed ocean-bottompressure oscillation in the North Pacific has been challenging.

Result: By examining the atmospheric circulation, we confirm that the GRACE-observed oscillation in North Pacific is a result of ENSO, the Aleutian Low, and Jet Stream variation.

Significance: The result explains how ocean and atmosphere couples and improves our understanding of climate change with GRACE.

Discussion & Summary

- 1. Simultaneously model SSH and OBP accurately is numerically challenging.
- 2. Non-Boussinesq physics (heat & freshwater fluxes) and topography-following are the two key features in representing altimetry SSH and GRACE OBP correctly.
- 3. We have some progress, but more effort is needed.