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Original motivation for this work

 Rossby was bothered by feature tracking
problems on constant-height surfaces.

e Shuman believed that vertical advection
terms ruin numerical stability.

 Everyone likes models that do a decent job
resolving fronts.

* On fixed grids,

- wave-induced vertical advection smears out
vertical property contrasts;

- horizontal transport & eddy mixing can have a
false diapycnal component.



Lesson 1

Computers get faster over time.

Aside from that, modeling Is a zero-sum game.
You gain a few points here, you lose some there.

For example:

“Isentropic models provide vertical resolution
where it Is needed most.”

Yes, but you pay a price for the resulting uneven
grid spacing.



Diapycnal diffusivity implied by stratification trends
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Diapycnal diffusivity implied by stratification trends
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Comparison of 2 grid generators in coupled model
Top row: hybgnl
Bottom row: hybgn3
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Lesson 2

Certain things are easier in z coordinate
models.

u,v are always the Cartesian velocity components,
regardless of your model’s vertical coordinate.

Hence, the pressure gradient term must always
mimic the gradient of p at constantz, V.,p




General recipe: i(@) — (5p) (Q)
P 0 \OX /z 0 \OX tJ OX /s

The 2-term expression on the right reduces to a single
term if one of the following conditions is met:

S S =52)
® = 13) =0(3),
o (F) =@, 5F)=&0+e)

(i.e. (8p/ ,o)S IS an exact differential on s surface)



Examples:
(c-1) s=s(p) Q)
(c-2) ideal gas with s =0 ) =

Counterexamples:

(c-3) s =1z/z,,, (“sigma’ coordinate)

(c-3) s =py (isopycnic ocean models)



Finite volume approach:

1(ap) (op)
) (2] s

[a(4,p)/ (x,5)dx ds =pgdp—§ pdgp



Lesson 3

Thermobaricity is numerically problematic
because it spawns a second term in the
horizontal PGF expression.

It is mainly an issue in abyssal flows.

Despite the efforts of Sun et al. (1999) and
Hallberg (2005), the problem has not been
solved to everyone’s satisfaction.



Oceanographic Application

Isentropic charts lose in distinctness somewhat when
applied to the ocean.

R. B. Montgomery: A suggested Method for Representing
Gradient Flow in Isentropic Surfaces. Bull. Amer. Meteor.
Soc., 1937.



Thermobaricity: temperature dependence of the
(adiabatic) compressibility coefficient p—lap/ op
0% p
opoT

#0

Example of a non-thermobaric fluid: ideal gas

op ¢C, 1

d 1
(1St Law =>) CV%—Cp—'D:O = —
p P pop C,p

l.e., atmospheric compressibility depends only on p



Summary of recurring Issues

Vertical diffusion near z/p coord. interface
Thermobaricity

Subgridscale eddy mixing (Gent-McWilliams)
Z-coordinate-centric mixing schemes

Lack of ideas on grid generator development



Lesson 4

Model development will
continue indefinitely



The T/S/p conundrum in Isopychic-
coordinate models

7,5,p,0s@re materially conserved in adiabatic flow.

The three variables are related: p,,, = p,.(7,S)and
7,S are of similar importance.

Due to numerical errors and nonlinearities in the
equation of state, 7,S advection is unlikely to

CONServe O,

This Is extremely inconvenient in models using p,,;
as independent variable.



