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Original motivation for this work
• Rossby was bothered by feature tracking 

problems on constant-height surfaces.
• Shuman believed that vertical advection 

terms ruin numerical stability.
• Everyone likes models that do a decent job 

resolving fronts.
• On fixed grids,

- wave-induced vertical advection smears out 
vertical property contrasts;

- horizontal transport & eddy mixing can have a 
false diapycnal component.



Computers get faster over time.
Aside from that, modeling is a zero-sum game. 
You gain a few points here, you lose some there.

For example:

“Isentropic models provide vertical resolution 
where it is needed most.”

Yes, but you pay a price for the resulting uneven 
grid spacing.

Lesson 1



Diapycnal diffusivity implied by stratification trends
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Switch role of  z, as dependent/independent variables:

Discretize:
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Now solve for 



Interface movement 
required to restore 
density (dashed)  to 
target (solid) can lead 
to this much diffusion



Diapycnal diffusivity implied by stratification trends
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Start from

Integrate over  z  and discretize in time:

Now solve for  
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Comparison of 2 grid generators in coupled model
Top row: hybgn1

Bottom row: hybgn3

SST mnth 3 – mnth 0 SST mnth 6 – mnth 0 SST mnth 9 – mnth 0 SST mnth 12 – mnth 0



Comparison of 2 grid 
generators in coupled 
model: year 100

left: hybgn1
right: hybgn3

green: warming; 
brown: cooling; 
red hatching: 
isopycnals
descending; blue 
hatching: 
isopycnals
ascending
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Certain things are easier in z coordinate 
models.
u,v are always the Cartesian velocity components, 

regardless of your model’s vertical coordinate. 

Hence, the pressure gradient term must always
mimic the gradient of p at constant z, 

Lesson 2

pz
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The 2-term expression on the right reduces to a single 
term if one of the following conditions is met:

General recipe:
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(i.e.                 is an exact differential on  s surface)

(c)  

 sp /



   sxzx
p gz 






1  ss

p )( 


(c)  

Examples:

(c-1)   s = s() 
p

(c-2)   ideal gas with s =  Tcp

Counterexamples:

(c-3)   s = pot (isopycnic ocean models)

(c-3)   s = z/zbot (“sigma” coordinate)
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Finite volume approach:



Thermobaricity is numerically problematic 
because it spawns a second term in the 
horizontal PGF expression. 

It is mainly an issue in abyssal flows. 

Despite the efforts of Sun et al. (1999) and 
Hallberg (2005), the problem has not been 
solved to everyone’s satisfaction.

Lesson 3



Oceanographic Application

Isentropic charts lose in distinctness somewhat when 
applied to the ocean. In the first place, two samples of 
water of the same specific volume at one pressure do not 
in general have the same specific volume at another 
pressure….

In the second place, when two samples of the same 
specific volume but different temperature and salinity mix, 
the resulting mixture has a lesser specific volume than the 
original samples.

R. B. Montgomery: A suggested Method for Representing 
Gradient Flow in Isentropic Surfaces. Bull. Amer. Meteor. 
Soc., 1937.



Thermobaricity: temperature dependence of the 
(adiabatic) compressibility coefficient 
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Example of a non-thermobaric fluid: ideal gas
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(1st Law =>)

i.e., atmospheric compressibility depends only on p
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Summary of recurring issues

• Vertical diffusion near z/ coord. interface
• Thermobaricity
• Subgridscale eddy mixing (Gent-McWilliams)
• z-coordinate-centric mixing schemes
• Lack of ideas on grid generator development



Man May Work from Sun to 
Sun But Woman’s Work is 

Never Done

Lesson 4

Model development will 
continue indefinitely



The T/S/ conundrum in isopycnic-
coordinate models

T,S,pot are materially conserved in adiabatic flow.

The three variables are related: pot = pot(T,S) and 
T,S are of similar importance.

Due to numerical errors and nonlinearities in the 
equation of state, T,S advection is unlikely to 
conserve pot .

This is extremely inconvenient in models using pot
as independent variable.


