

# **Ekman drift and vortical structures**

Yves Morel, Leif Thomas (Ocean Modelling 2008)



#### Conclusion

ortex wind

Wind stress interacts with vortical structures and modifies Ekman drift

Decelerates surface vortices / Accelerates subsurface ones

Additional along wind propagation

Analytical solutions can be calculated but no simple rules/parameterization (depends on details of vortex structures in a non trivial way) Not a problem if you have enough resolution, but

 $\Rightarrow$  In OGCMs with coarse resolution water mass distribution may be difficult to reproduce accurately if mainly trapped in vortices in reality





#### Numerical experiment 2 layers, 100 days, wind, micom code



Vortex wind 3 to LOM2009

### Preliminary principles 1 POTENTIAL VORTICITY "thinking"

 $\zeta$  = rot (U) important quantity **BUT NOT CONSERVED** 

 $PV = (\zeta + f) \cdot \nabla \rho \quad (= (\zeta + f)/h)$ 

is conserved for each particles if adiabatic motion

PV = TRACER

ortex wind

The velocity field can be reconstructed from the knowledge of PV (if geostrophic balance is assumed)



### Preliminary principles 1 Dipolar structures and vortex propagation



Vortex wind

#### Preliminary principles 2

Wind Stress effects

Thomas 2005, Morel et al 2006 ... and Stern 1965



rot Fw?

$$F_w = d\tau/d_z$$

 $\tau_{w} = C_{D} \rho_{a} |W| |W|$ 



 $F_w = cstt$  if W = cstt $\frac{d}{dt}\Delta Q$ = 0

need rot(W)



#### Preliminary principles 2



## Analytical and numerical calculations





#### Problem

can we predict and parameterize the effect in coarse resolution models?

<sup>0</sup>10

Stern (long linear waves)

$$C = U_{Ek} \frac{F_2}{F_1 + F_2},$$

$$U_{Ek} = \frac{\tau_o}{f \rho_1 H_1}$$

$$= U_{Ek} \frac{H_1}{H_1 + H_2},$$

$$= \text{barotropic part of Ekman drift}$$

#### Present study

$$\begin{split} q_{1} &= \frac{f \tau_{o}}{\rho_{1} g' H_{1}^{2}} \quad \frac{\partial_{r} (\overline{\psi}_{1} - \overline{\psi}_{2})}{\partial_{r} \overline{\psi}_{1}} \quad r \; [sin(\theta - \overline{\Omega}_{1} t) - sin\theta], \\ &= \frac{f \tau_{o}}{\rho_{1} g' H_{1}^{2}} \quad \frac{\overline{V}_{1} - \overline{V}_{2}}{\overline{V}_{1}} \quad r \; [sin(\theta - \overline{\Omega}_{1} t) - sin\theta], \\ &= \frac{f \tau_{o}}{\rho_{1} g' H_{1}^{2}} \quad \frac{\overline{\Omega}_{1} - \overline{\Omega}_{2}}{\overline{\Omega}_{1}} \quad r \; [sin(\theta - \overline{\Omega}_{1} t) - sin\theta], \end{split}$$

Much more complicated Depends on vortex structure (sign, strength, radial shape) + exists along wind drift



#### Some basic principles can however be found (4 cases)

- (1) In the case of a cyclonic vortex intensified in the upper layer,  $-\partial_r \overline{h}_1/\overline{\Omega}_1$  is negative and the cross wind displacement associated with the beta-gyre is at the left of the wind, compensating the Ekman drift. This is indeed what is observed for the reference experiment.
- (2) In the case of an anticyclonic vortex intensified in the upper layer,  $-\partial_r \overline{h}_1/\overline{\Omega}_1$  is also negative, again leading to a compensation of the Ekman drift.
- (3) In the case of a cyclonic vortex intensified in the lower layer,  $-\partial_r \overline{h}_1/\overline{\Omega}_1$  is positive, which yields a propagation to the right of the wind reinforcing the Ekman drift (normally playing no advection role in the lower layer).
- (4) In the case of an anticyclonic vortex intensified in the lower layer,  $-\partial_r \overline{h}_1/\overline{\Omega}_1$  is positive, yielding again a propagation to the right of the wind reinforcing the Ekman drift (normally playing no advection role in the lower layer).

#### Simple rules for vortex sign and surface/subsurface, illustrated further













#### Effect of vortex vertical structure

#### Bottom intensified

(<sup>08</sup>15

MINISTÈRI



LOM2009

Vortex wind

#### Dipolar structure for bottom intensified vortex

# Numerical results



#### Analytical results



s.

MINISTÈRE

LOM2009

<sup>0</sup>16







 $U_{Ek} = 1 \text{ cm/s}$  $C_{Stern} = 0.5 \text{ cm/s}$ 

Effect of vortex radius

R = 80 km (twice ref.)



MINISTÈRI

LOM2009

(18) (0818

Vortex wind



#### Conclusion

Wind stress interacts with vortical structures and modifies Ekman drift

Decelerates surface vortices / Accelerates subsurface ones

Additional along wind propagation

Analytical solutions can be calculated but no simple rules/parameterization (depends on details of vortex structures in a non trivial way)

 $\Rightarrow$  In OGCMs with coarse resolution water mass distribution may be difficult to reproduce accurately if associated with vortices

Potential problem for climate studies

