Adaptation of the vertical resolution in the mixed layer for HYCOM

By Cécile Renaudie (Météo France/SHOM)

and Rémy Baraille (SHOM), Yves Morel (SHOM), Gwenaëlle Hello (Météo France), Hervé Giordani (Météo France)

Initial conditions

- Profile of temperature at the beginning of the simulation and zoom over the first 200m
- Representative of a
 winter stratification in
 the north eastern
 Atlantic ocean at midlatitude
- 1m resolution
- Only the forcings, KPP and hybgen are activated

The problem

- Parameters used to define z-levels in HYCOM :
- h₁ (dp00): minimum thickness of the first layer;
- h_{max} (dp00x): z-level spacing maximum thickness;
- stretch (dp00f): stretching factor.

- Simulation during 20 days
- Forcings :
 - wind=20 m/s;
 - air temperature=1°C;
 - net radiative flux=0W/m2
- 32 hybrid layers

→ Difference in SST: 0.3°C! → The mixed layer is

poorly represented

Solution: Adaptive vertical resolution

• <u>Determination of the mixed layer depth h_{mix} </u>: depth at which a change from the surface density of 0.025 kg/m³ has occurred. If mixed layer=1 layer, it is extended to the last z-level from the previous time step, N_z=number of z-levels;

- Calculation of the coefficients :
 - if $h_{mix} < 20 \text{ m}$: $h_1 = 1.01 \text{ m}$, otherwise $h_1 = 3 \text{ m}$.
 - stretch is determined to verify the equation:

$$h_{mix} = h_1 \frac{1 - stretch^{N_z}}{1 - stretch}$$

- hmax=500m.
- <u>Filtering</u>: to avoid strong modifications of the vertical grid $h_1^{n+1} = (1 - \alpha) \times h_1^n + \alpha \times h_1$ and $stretch^{n+1} = (1 - \alpha) \times stretch^n + \alpha \times stretch$ with $\alpha = \frac{dt}{K}$ K=10000s, dt=100s

Experiments and atmospheric forcings

Experiments	Number of layers	Vertical coordinate	h ₁ (m)	h _{max} (m)	stretch
EXP-REF	4476	Z	1.00	1.00	1.00
EXP-CNA	32	hybrid	1.01	1.41	1.04
EXP-CG	32	hybrid	3.00	500.	1.18
EXP-A	32	hybrid	adaptive	adaptive	adaptive

Case	Air temperature (°C)	Wind (m/s)	Net radiative flux (W/m2)	Short- wave flux (W/m2)	Number of days
Convective	1	20	0	50	20
Wind-mixing	15	20	200	250	20
Realistic	ARPEGE	ARPEGE	ARPEGE	ARPEGE	366

Cécile Renaudie

Results for the convective case throughout time

LOM 2009, Miami, Florida Cécile Renaudie

Results for the wind-mixing case after 20 days

Results for the wind-mixing case throughout time

LOM 2009, Miami, Florida Cécile Renaudie

The realistic case

200 time (days)

250

150

June 2009 LOM 2009, Miami, Florida Cécile Renaudie

100

50

350

300

Results for the realistic case throughout time

PLM/PPM

Conclusions

- EXP-CNA : poor representation of the mixed layer as it deepens, growing error in SST and in mixed layer structure;
- EXP-CG : better solution in convective cases, but not adapted to shallow mixed layers;
- EXP-A : improves the distribution of geopotential levels in the mixed layer;
- Still some improvements to make :
 - Sensitivity to mixed layer definition;
 - Sensitivity to the damping rate : it could depend on the forcings;
 - 2 and 3 dimensions : still some problems with boundary conditions.

temperature (C)

