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The big questions,

" |s there another scale of motion between
mesoscale and overturning scale?

" |s there an intermediate regime between the
2D and 3D turbulence?

" Can HYCOM catch (part of) these processes?



The small questions,

= How does the submesoscale (SM) form? In our
case, the product of ageostrophic baroclinic
instabilities in the mixed layer (ML)

= Why are they important? It affects the mixed
layer restratification,

" How do we study them? With an high
resolution simulation of the Gulf Stream made

with HYCOM



How does the submesoscale form?

Submesoscales are the product of the nonlinear
interaction of,

Shallow Mixed Layer Instabilities (MLI’s)
originate in the ML, L~ 200m-20km, T ~ 1 day.

Deep Mesoscale Instabilities
originate as instabilities of the main thermocline

L~ 30km, T ~ 30 days.



How does the submesoscale form?
Classic ML dynamics,

1. Forcings produce horizontal density
gradients in the ML,

2. Gravitational sloping leads to a mixed
layer in geostrophic balance,

But we can also have,
3. Formation of baroclinic instabilities.



Why are they important?

submesoscale dynamics is involved in the
restratification of the mixed layer and could
affect the mesoscale too.

Restratification is enhanced by the release of APE
(flattering of isopycnals) due to the formation of
instabilities in the mixed layer.



How do we study the SM processes?

One year simulation HYCOM of the Gulf Stream
region.

Low res:
1/12th deg, interpolated to 1/48th degree

High res (nested in the low res):

1/48th deg saved in means and snapshot every 12
hours
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The vorticity field shows a strong
seasonality in the submesoscale activity
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We computed spectra of KE to have a
quantitative idea of the processes involved...

€ rate of energy cascade

n rate of ensotrophy cascade
K wave number
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K. Vallis. Atmospheric and oceanic fluid dynamics: fundamentals and large-scale

circulation. (2006) pp. 745
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We computed spectra of KE to have a

quantitative idea of the processes involved...
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...While we used Okubo Weiss
for a more quantitative approach.

Q:SQ—Q2

Where S is the strain rate (horizontal, shear +
stretching) and Q is the relative vorticity.

Q > 0, strain rate dominates: e.g. beside an eddy.
Q < 0, vorticity dominates: e.g. within an eddy.



...Okubo Weiss display a stronger
seasonality in its positive part.

Q > 0, strain rate dominates: e.g. beside an eddy.
Q < 0, vorticity dominates: e.g. within an eddy.
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We define OW+ and OW- as

[Poje et al, 2010],

oW~ :A—lf\/@dA,Q>o
oW~ :A—l/\/@dA,Q<o

we compute this quantity over each region,



We find that,
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ML Depth (m)

We use OW* as a metric of the SM
activity...
...and ML Depth as a metric of restratification.
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Conclusions

. Submesoscale activity in the Gulf Stream
displays a strong seasonal cycle,

. The model resolves part of the SM, as seen
from the spectra,

. the SM is mostly hyperbolic,

4. SM affects the restratification process.
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