

Validation of the U.S. Navy Arctic Cap Nowcast/Forecast System (ACNFS)

O.M. Smedstad QinetiQ North America

E.J. Metzger, P.G. Posey, A.J. Wallcraft, R.H. Preller Naval Research Laboratory

> M.W. Phelps Jacobs Advanced Systems Group

Layered Ocean Model Workshop 7-9 February 2011

Arctic Cap Nowcast/Forecast System

Grid resolution (km)

- Improved ice and ocean models
- Improved data assimilation in ice and ocean models
- Increased horizontal resolution ~3.5 km at the pole
- 3-hrly forcing from NOGAPS
- Validation period: July 2007 June 2009
- Running in real-time at NAVOCEANO since 13 June 2010 on IBM Power 6
- 3-day hindcast/analysis/5-day forecast
- Boundary conditions from 1/12°global assimilative HYCOM system running in real-time at NAVOCEANO

Community Ice CodE (CICE)

- CICE v4.0 developed by Los Alamos National Laboratory
 - Next generation, advanced system
 - Additional ice physics
 - Energy-based ice ridging scheme
 - Energy-conserving thermodynamics
 - Multi-category, linearly remapped ice thickness
 - New capability to predict areas of lower ice concentration possibly associated with lead openings
- HYCOM and CICE are coupled via the Earth System Modeling Framework (ESMF)

HYbrid Coordinate Ocean Model (HYCOM) NCODA Profile Observations 1 February 2011

HYbrid Coordinate Ocean Model (HYCOM) NCODA Temperature Observations 1 February 2011

MODAS synthetic temperature and salinity profiles along satellite altimeter tracks

ACNFS Development Non-assimilative HYCOM/CICE

Winter – 15 March 2007

Summer – 15 September 2007

Non-assimilative ACNFS (initialized from a CICE only simulation) integration from 2005-2008. Black line is independent National Ice Center (NIC) ice edge.

Assimilative ACNFS was initialized from non-assimilative ACNFS. Validation period: July 2007 – June 2009.

AND SPACE CENTRY

1/12° Arctic Cap HYCOM/NCODA/CICE

Animation spans July 2008 - August 2009, every 7 days Black line is independent NIC ice edge.

Validation Results: Ice Edge Error

- Compared ice edge location from both systems to the independent NIC daily ice edge analysis
- Validated for the entire Arctic domain and regional areas (Western and Eastern Arctic)
- Validation period: July 2007
 June 2009

Ice Edge in Baltic Sea

Validation Results: Ice Thickness Ice Mass Balance (IMB) Buoys (11)

- IMB buoys deployed by the Cold Regions Research Engineering Laboratory (CRREL)
- Drift paths marked in blue

 ACNFS had lower
 thickness bias (central and eastern Arctic)
- Drift paths marked in red

 PIPS 2.0 had lower
 thickness bias (western
 Arctic and Canadian
 Archipelago)
- July 2007 May 2009

Validation Results: Ice Thickness Mean thickness error (m) (bold lower error)

Buoy name	ACNFS	PIPS 2
2006C	2.07	2.02
2007D	1.50	1.51
2006E	1.26	1.55
2007B	1.70	1.07
2007C	0.92	0.95
2007D	1.40	1.68
2007F	1.18	0.63
2007G	0.89	0.53
2007H	0.97	-0.61
2008D	0.11	-0.36
2009D	1.12	-0.33
Mean of absolute value of difference	1.19	1.02

Validation Results: Airborne Ice Thickness Survey – April 2009

Survey reported: Total thickness (ice + sn<u>ow)</u>

Hindcast ice thickness was interpolated to the airborne survey locations

Haas et. al., 2010: Airborne electromagnetic (EM) ice thickness survey collected April 2009 as part of the Pan-Arctic Measurements and Arctic Regional Climate Model Simulations (PAM-ARCMIP) project.

Validation Results: Ice Thickness

	Mean thickness (m)			Difference (m)		Difference with snow ¹ (m)	
	Obs ² AC/PIP	ACNFS	PIPS2	ACNFS – obs.	PIPS2 – obs.	ACNFS – obs.	PIPS2 – obs.
Flight 1	2.11/2.11	2.01	2.23	-0.10	0.12	0.10	0.32
Flight 2	2.42/2.43	2.08	2.87	-0.34	0.44	-0.14	0.64
Flight 4	4.48/3.83	3.94	3.27	-0.54	-0.56	-0.34	-0.36
Flight 6	2.97/2.98	3.52	2.46	0.55	-0.52	0.75	-0.32
Flight 8	1.99/1.99	1.95	2.21	-0.04	0.22	0.16	0.42
Flight 9	2.23/2.23	1.69	1.95	-0.54	-0.53	-0.34	-0.33
Absolute value of mean difference			0.35	0.40	0.31	0.40	

Bold values are closest to observations.

¹ Assuming a constant 20 cm snow depth for all flights. ² Observational mean computed only at those locations where each system also output ice.

Validation Results: Ice Drift International Arctic Buoy Program (IABP)

hour separation distance

error was calculated for

both systems

Isolines are annual 2008 ice thickness (m)

Validation Results: Ice Drift Hindcast vs. observed drift velocities

	N	/lean (cm/s	Mean difference (cm/s)		
	Obs.	ACNFS	PIPS 2	ACNFS – obs.	PIPS 2 – obs.
U-vel.	5.4	6.5	5.0	1.1	-0.4
V-vel.	6.2	7.3	5.6	1.1	-0.6
Speed	9.1	10.8	8.3	1.7	-0.8

- Small differences for both systems
- ACNFS overestimates velocities and PIPS 2 underestimates velocities

ACNFS New Capability Areas of low concentration may be indicative of leads

Ice Concentration valid 12 July 2010

Validation Testing Summary

- ACNFS equal to or better than PIPS 2 and it has the capability to output products not available in PIPS 2
- NAVOCEANO is in the process of starting the operational testing

Global Real Time System

- Implement CICE in the 1/12° global model
- Change to the 3dvar version of NCODA
- Replace MODAS with ISOP (Improved Synthetic Ocean Properties)

1/12° Arctic Cap HYCOM/NCODA/CICE 5 February 2011

