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What is polynomial chaos?

¢ |dea of polynomial chaos originated with Norbert
Wiener in 1938 — before computers.

e |tis being used by engineers to assess how
uncertainties in a model’'s inputs manifest in its
outputs.

e It can be much more efficient than Monte Carlo
methods.

e Can it be useful to oceanographers?
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Why “polynomial”? Why “chaos”?

“Chaos” simply refers to uncertainty. Nothing to do
with strange attractors?

Want to compute how uncertainties of a dynamical
system’s inputs manifest in its outputs.

“Polynomial” refers to use of polynomial expansions
to propagate uncertainties.

Idea is to exploit orthogonality of the polynomials.
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HYCOM: uncertain inputs.

e Initial conditions.

e Boundary conditions.
e Forcing.

e Parameters.

e Polynomial Chaos can handle only a limited number
of uncertain inputs.

e But it focuses on all likely values of those few
uncertain inputs.
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HYCOM: uncertain outputs.

o Every field at every time.

e Value of a particular field at a particular point and a
particular time.

e Derived quantities,
e.g. maximum of the Meridional overturning stream
function.

e Polynomial Chaos allows focus to be on points of
interest.

e Not necessary to explore all uncertainties
simultaneously.
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Sl m plest case: Polynomial Chaos
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Call the uncertain input £ and the output ¢. How?
Uncertainty of ¢ is specified via its pdf p(&).

Want pdf of ¢ or at least information about how it
varies as ¢ varies.

Basic Idea: Express output as a polynomial series.

(&) = do + D1 P1(§) + p2Pa(6) +

Orthogonal polynomials Py are related to pdf p.
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Simplest case, continued:
one uncertain input, one output of interest

(Z)(g) = ¢O + ¢1 P1(‘5) + ¢2P2(§) 4+ ...
[ POP(OnEIdE = 5

e Is the series guaranteed to converge?
e In practice, it must be truncated.
e How to compute the coefficients ¢g, ¢1, ¢o,...?

e Use Gaussian quadrature to evaluate the integrals.
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Slmplest Case’ Cont”’]ued Polynomial Chaos
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Coefficients:

bi = ,J,k / H(6)Pr(€)p(€) e

Gaussian Quadrature:

/ (O PL(E)E)E ~ 3 6(Ep) Prl€p) Wi
o

Quadrature points: &p
Quadrature weights: wp

Computing outputs ¢(&p) for inputs at quadrature
points &y requires multiple model runs.

How many quadrature points (runs) are needed?



Several outputs of interest, Polynomial Chaos
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Two outputs:

?(&) = do + d1P1(§) + 92P2(§) + - ..

Y(&) = o + 1 P1(§) + ¥2Pa(8) + ...
Two or more outputs require no more runs than does
one output.
Just save values for all outputs of interest, ¢, 1, .. ..

More coefficients, so more quadrature integrals are
needed.

Quadrature integrals are computationally cheap.

Can examine uncertainty of an entire field.



How to use expansion coefficients?

— / H(E)p(€)dE = o

kmax

(¢ — ¢0))? Zm

e mean:

e variance:

e covariance:

kmax

(6 — ¢0)) (¥ — t0)) mek

e Generate a cheap ensemble.

(&) = do + P1P1(§) + p2P2(§) +
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Two uncertain inputs, one output of interest "
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e Call the uncertain inputs £ and . O. Knio
e Uncertainties of are specified via joint pdf p(¢&, x).
e Now have polynomial series in two variables: Hou?

¢(£7X) :¢0+¢1P1(57X)+¢2P2(5,X)+

e If uncertain inputs are independent, pdf factors:

p(&, x) = pe(&)px(x)

e Then 2D quadrature reduces to two 1D quadratures.
e Number of quadrature points (runs) is squared.
e Curse of dimensionality.

e Sparse cubature might provide economy when
exploring consequences of several uncertain inputs.
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Problem: How do uncertainties of the
Yucatan inflow manifest within the Gulf of
Mexico?

Need to quantify inflow uncertainties.

Inflow is characterized by several 2D time-varying
fields.

Computational cost increases dramatically with
number of uncertain parameters.

How to characterize uncertainties of inflow with only
a few parameters?
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How to characterize uncertainties of inflow
with only a few independent parameters?

e Use multivariate EOFs to characterize 2D spatial
patterns of inflow uncertainty.

¢ Use corresponding principal components to
characterize their temporal variability.

e Each mode’s amplitude is assumed to have a
Gaussian pdf.

e Hermite polynomials — Gauss-Hermite quadrature.
e Quadrature points dictate the required HYCOM runs.

e Each run is the sum of a "favorite" inflow and its
particular EOF contributions.
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Meridional velocity component of EOF.
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Eigenvalue spectrum.
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Contours of 17 cm SSH from quadrature
ensemble of 17 cm runs.
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Standard deviation of sea-surface height.

Std dev. SSH(m) - Day ~150

@
3
2
3

Longitude

Std dev. SSH(m) - Day 090

Longitude

Longitude

W
Latitude

04

Std dev. SSH(m) - Day ~300

05

08

W
Latitude

04

06

08

1

Polynomial Chaos

M.Iskandarani,

A.Srinivasan,

W.C. Thacker,
O. Knio

Results



Convergence of series for SSH standard
deviation for day 90.
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Convergence of series for SSH standard

deviation for day 300.
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Covariance of SSH with SSH at one point for

days 90, 150,

240, and 300.
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Covariance of u,v-velocity with SSH at one
point for day 90.
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Kernel density estimates for mixed-layer
depth at day 90 from artificial ensemble.
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