Impact of Topography on Circulation and Water Mass Transformation in 0.72° HYCOM-CICE Arctic Ocean

COAPS FSU Dmitry Dukhovskoy Eric Chassignet

NRL SSC Pam Posey Joe Metzger Alan Wallcraft

Acknowledgments: The work was supported by OPP NSF and HYCOM Consortium. Contribution from Alexandra Bozec (COAPS FSU)

Maintenance of the Thermohaline Structure in the Arctic Ocean

0.72° HYCOM/CICE (ARCco.72)

HYbrid Coordinate Ocean Model (HYCOM)

Los Alamos Sea Ice Model (CICE 4.0)

- Multi-category ice thickness
- Energy conserving thermodynamics
- Energy-based ridging scheme
- Elastic-viscous-plastic (EVP) ice dynamics

0.72° ARCc

- Arctic-only grid is a sub-region of the tripole grid
- 32 vertical ocean levels
- Atlantic and Pacific boundaries
 - Closed (no-ice) in CICE
 - Closed but with relaxation to climatology in HYCOM

ARCco.72 60 55 50 45

40

35

30

Horizontal Resolution (km)

Test Run with Simplified Topography (ARCc0.72 – 060)

HYCOM Initialization:

- From ocean only run (with energy loan ice model, 39 yrs of model integration performed at the Naval Post-Graduate School)
 CICE initialization:
- From ice-only run 1999-2003

HYCOM Spin-up:

- 5-year run with climatology (ERA40)
- 3-year run with 2000-2002 forcing

Model Run: 2003-2006

Atmospheric forcing: Lateral OBs: Rivers: Barotropic/barocl Δt: CICE Δt: 3 hourly NOGAPS 0.5° fields relaxation to T/S climatology climatology 20 s/360 s 3600 s

Temperature Field at 200 m

ARCc0.72 – 060 (ST NRL)

GDEM-3

Vertical Cross-Section of the T Field

Model Experiments

ARCc0.72, 2003-2009, (COAPS):

HYCOM Initialization:

- Climatology CICE initialization:
- 3m ice where t < t_{freezing}

HYCOM/CICE Spin-up:

- 1-year run with climatology
- 5-year run with 2003 forcing

Model Runs:

Atmospheric forcing: Lateral OBs: Rivers: Barotropic/barocl Δt: CICE Δt: 3 hourly NOGAPS 0.5° fields
relaxation to T/S climatology
climatology
20 s/360 s
1800 s

- 1) Realistic Topography ("RT")
- 2) RT, closed Bering Strait
- 3) RT, closed CAA
- 4) RT, isolated Kara Sea
- 5) ST (replicated NRL test run)

Model Results

Temperature Profiles from ARCco.72 and GDEM

Volume Integrated Heat Content of Atlantic Layer

Depletion and Cooling of Atlantic Layer in ARCco.72

Atlantic water inflow is strongly underestimated in the model. Observations suggest northward flow through Fram Strait ~12Sv (*Schauer et al.*, in: "Arctic-Subarctic Ocean Fluxes", 2008).

Possible reasons:

- 1) Unresolved flow structure in the Fram Strait
- 2) Relaxation vs nesting at the OBs

SSH from the 1/25° HYCOM of the Gulf Of Mexico (GOMlo.04)

Relaxation to climatology of T, S, and layer thicknesses along the lateral OB

Conclusions

- Biases in thermohaline structure of the Arctic Ocean in the test run of ARCc0.72 with simplified topography ("ST") are due to:
 - Underestimated inflow of Atlantic water through Fram Strait
 - Closed shelves
- Model simulations with realistic topography ("RT"):
 - Have better representation of the shelf circulation
 - Double the northward flow of Atlantic water through Fram Strait (still much lower than observed)
 - Slower depletion/cooling of the Arctic Ocean Atlantic Layer
- Model simulations with closed/open straits
 - Bering Strait inflow does not play a noticeable role in the thermohaline structure (for the coarse ARCc0.72 only!)
 - Open CAA increases Atlantic water inflow through Fram Strait