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Major points
What really matters is eddy diffusion, not
molecular diffusion

Eddy diffusion consists of Stirring and Mixing

Isopycnal exchange of watermass iIs no free
lunch

Cabbeling Is always a sink of GPE
A new type of meso-scale instability

supported by energy released in connection
with the non-constant elasticity of seawater.



Eddy diffusion Is separated into 2 steps:
stirring & mixing
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Potential temperature on o, =29.3(kg/nm’)

Potential temperature (°C) on S, 5=29.3 (kg/ma)
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Pole-pole difference in Elasticity
controls the bottom water formation
On eddy scales: Can perturbations

on Isopycnal surfaces grow ?

ld and fresh water
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Grid boundary
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Stirring along Isopycnal surface
Induces density anomaly and GPE changes

p(B—=T)-p(T)=[E(T,0)-E(B,0)]Ap/2000
p(T — B)-p(B)=[E(T.0)-E(B.0)] Ap/2000

O/oo

7 P=P.,
T
/ Density anomaly at
' o both stations Is

non-Zero.

They have the same
value

10

Station B Station O Station T



Amplitude of perturbations

Station B
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Isopycnal exchange Is no free lunch
To count GPE changes, at least two
parcels should be included

p=500 db / p=500 db / p=500 db ' /

p=1000 db p=1000 db p=1000 db

a) Two parcels before switch b) Parcel pos after moving A c¢) Density surface adjuste

Isopycnal surface may be distorted after water parcel exchange
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Sketch of three surfaces and
No energy required for baS|C VECtOrS

isopycnal stirring ?

o Horizontal

i P D
diffusion

changes GPE

zl

Diapycnal
diffusion
requires
energy for
supporting

No energy required for stirring;
Cabbeling releases GPE
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Optimization of mixing energy
for Isopycnal mixing

 The optimal wedge of mixing

It Is defined by the potential density
surface and the adiabatic density surface

« Within the mixing wedge, the mixing
energy Is optimized:

1) When energy Is released, it Is maximal
2) When energy Is required, it is minimal

e Using the mean local isopycnal slope Is
adequate for isopycnal mixing
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A meridional section through
30.5°W at 49.5°S and 48.5°S

(WOA01) Within this wedge, GPE is

a) Meridional section of potential density surfaces
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A meridional section through
30.5°W at 49.5°S and 48.5°S

Density declines Density increases Within this wedge, GPE s
—->GPE is increased SGPE is released released after exchange

Grid scale view (30.5W, 48.5S 1000db) b)A refined view (30.5W, 48.5S, 0db)
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Pressure (db, not to scale)

A meridional section through
149.5°E at 19.5°N and 20.5°N

(WOAOQ1) Within this wedge, GPE s
increased after exchange
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for supporting
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A meridional section through
149.5°E at 19.5°N and 20.5°N

Density declines
—->GPE is increased
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Energy source/sink associated
with eddy diffusion

Energy released during diffusion cannot be
very efficiently used to sustaining diffusion
when energy Is required.

For the station at (30.5W, 48.5S), exchange within
this wedge leads to release of GPE (self energized).

Exchanging outside this wedge requires mechanical
energy for supporting.

Isopycnal surface can be treated as the surface
where “horizontal stirring” requires the least amount

of GPE, so it Is the preferred surface for “horizontal
diffusion”.
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Isopycnal, horizontal and sigma-
surface eddy diffusion

IIIIIIIII

Horizontal diffusion
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GPE source/sink (TW)

Sink means perturbations are locally seft-energized

Type of Stirring cabbeling
eddy
diffusion _ ;
Source Sink  Sink
Horizontal 3.8 38 -021 787
Sigma 150 -58 -17 225 ?7?

Isopycnal 0.031 0.025 -0.052 0.108



GPE source due to isopycnal stirring
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GPE sink due to isopycnal stirring
(stirring Is self-energized)

GPE sink due to isopycnal stirring (mW/m2)
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GPE sink due to cabbeling In
connection with isopycnal mixing

Energy release due to cabbeling(mW/m2)
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Net GPE source & sink
due to isopycnal stirring/mixing

b) Zonal GPE source/sink due to isopycnal stirring & cabbeling

a) Meridional GPE source/sink due to isopycnal stirring & cabbeling
l T T T T T 0,4 T T T T T T T T T
"~ ,‘ = = = Source = = = Source §
1of  , V! —Sink | —— Sink i
" \ sum sum 1!
\ !
I 1 |
0.5 ! 1 I
! \
! \
I
0.0
-0.5
-1.0}
—1 ‘5 [ 1 O 6 1 1 1 1 1
20N 40N 60N 80N-' 30E 60E 90E120E150E 180 150W 20W20W 60W 30W
29

80S 60S 40S 20S 0



GPE sink due to isopycnal
stirring and cabbeling

Energy release due to stirrring and cabbeling(mW/mz)
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Eddy diffusivity inferred from
drifter trajectories wumpkn eta., 2002)
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GW/degree

GPE sink due to isopycnal stirring/cabbeling

Diffusion is not homogeneous or isotropic

a) Meridional profile of GPE sink due to stirring & cabbeling b) Zonal profile of GPE sink due to stirring & cabbeling
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Conclusion

e Quasi-horizontal tracer diffusion changes GPE:

1) Isopycnal surface diffusion may be the best
choice. Diffusion is non-uniform and an-
Isotropic

2) Horizontal diffusion is no good, sigma
surface diffusion is completely non-physical

 Thermohaline perturbations on isopycnal
surfaces may grow with energy released from
mean state --- this Is a new type of instabillity.

e Our analysis may suggest where to observe
such instability.
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