Energetics of quasi-horizontal stirring and mixing

Rui Xin Huang Woods Hole Oceanographic Institution, Woods Hole, USA

Copyright 1996-98 © Dale Carnegie & Associates, Inc.

1

Major points

- What really matters is eddy diffusion, not molecular diffusion
- Eddy diffusion consists of Stirring and Mixing
- Isopycnal exchange of watermass is no free lunch
- Cabbeling is always a sink of GPE
- A new type of meso-scale instability supported by energy released in connection with the non-constant elasticity of seawater.

Eddy diffusion is separated into 2 steps: stirring & mixing

Depth of $\sigma_{0.5} = 29.3 (kg / m^3)$

Depth (db) of $\sigma_{0.5}$ =29.3 (kg/m³)

Potential temperature on $\sigma_{0.5} = 29.3 (kg / m^3)$

Elasticity on $\sigma_{0.5} = 29.3(kg / m^3)$ Elasticity (kg/m³) on $\sigma_{0.5} = 29.3(kg / m^3)$

Pole-pole difference in Elasticity controls the bottom water formation On eddy scales: Can perturbations on isopycnal surfaces grow ?

Amplitude of perturbations

Isopycnal exchange is no free lunch To count GPE changes, at least two parcels should be included

Optimization of mixing energy for isopycnal mixing

- The optimal wedge of mixing
 - It is defined by the potential density surface and the adiabatic density surface
- Within the mixing wedge, the mixing energy is optimized:

When energy is released, it is maximal
When energy is required, it is minimal

 Using the mean local isopycnal slope is adequate for isopycnal mixing

A meridional section through 30.5°W at 49.5°S and 48.5°S (WOA01) Within this wedge, GPE is

A meridional section through 30.5°W at 49.5°S and 48.5°S

A meridional section through 149.5°E at 19.5°N and 20.5°N

Energy source/sink associated with eddy diffusion

- Energy released during diffusion cannot be very efficiently used to sustaining diffusion when energy is required.
- For the station at (30.5W, 48.5S), exchange within this wedge leads to release of GPE (self energized).
- Exchanging outside this wedge requires mechanical energy for supporting.
- Isopycnal surface can be treated as the surface where "horizontal stirring" requires the least amount of GPE, so it is the preferred surface for "horizontal diffusion". 19

Isopycnal, horizontal and sigmasurface eddy diffusion

GPE source/sink (TW)

Sink means perturbations are locally seft-energized

Type of eddy diffusion	Stirring		cabbeling due to mixing	Sum of the absolute values
	Source	Sink	Sink	
Horizontal	3.8	-3.8	-0.21	7.8 ?
Sigma	150	-58	-17	225 ??
Isopycnal	0.031	0.025	-0.052	0.108

GPE source due to isopycnal stirring (stirring takes external energy)

GPE sink due to isopycnal stirring (stirring is self-energized)

GPE sink due to isopycnal stirring (mW/m²)

GPE sink due to cabbeling in connection with isopycnal mixing

Energy release due to cabbeling(mW/m²)

Net GPE source & sink due to isopycnal stirring/mixing

GPE sink due to isopycnal stirring and cabbeling

Energy release due to stirrring and cabbeling(mW/m²)

GPE sink due to isopycnal stirring/cabbeling

Diffusion is not homogeneous or isotropic

Conclusion

- Quasi-horizontal tracer diffusion changes GPE:
 - 1) Isopycnal surface diffusion may be the best choice. Diffusion is non-uniform and an-isotropic
 - 2) Horizontal diffusion is no good, sigma surface diffusion is completely non-physical
- Thermohaline perturbations on isopycnal surfaces may grow with energy released from mean state --- this is a new type of instability.
- Our analysis may suggest where to observe such instability.