### The internal gravity wave spectrum: A new frontier in global ocean modeling

#### Brian K. Arbic

Department of Earth and Environmental Sciences
University of Michigan

Supported by funding from:
Office of Naval Research (ONR)
National Aeronautics and Space Administration (NASA)
National Science Foundation (NSF)

#### Collaborators

- Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio
- University of Southern Mississippi: Maarten Buijsman
- University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage
- McGill University: David Trossman
- Bangor University: Patrick Timko
- Norwegian Meteorological Institute: Malte Müller
- University of Brest and The University of Texas at Austin: Rob Scott
- NASA Goddard: Richard Ray
- Florida State University: Eric Chassignet
- Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps



#### Motivation

- Breaking internal gravity waves drive most of the mixing in the subsurface ocean.
- The internal gravity wave spectrum is just starting to be resolved in global ocean models.
- Somewhat analogous to resolution of mesoscale eddies in basinand global-scale models in 1990s and early 2000s.
- Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricing only and employing a horizontally uniform stratification.

#### Motivation continued...

- Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing.
- Near-inertial waves and tides are put into a model with a realistically varying background stratification.
- Nonlinear interactions fill out the frequency-wavenumber spectrum.
- Note other groups are following suit with tide+circulation models (Harper Simmons, personal communication; Dimitris Menemenlis, personal communication; Müller et al. 2012).
- Talk focuses on the development of an internal gravity wave spectrum, after briefly discussing our other results.



# Implementation of tides in HYCOM

- --Add astronomical tidal potential of largest semidiurnal and diurnal constituents (8 in run analyzed here, 5 in newest runs)
- --Add self-attraction and loading term (scalar approximation in run analyzed here, altimeter model in newest runs)
- --Apply parameterized topographic wave drag to tidal part of flow in bottom 500 meters

#### HYCOM vs TPXO $M_2$ barotropic tides (Shriver et al. 2012)



1994] and the internal tides in HYCOM to results from an strong internal tide generation sites forced by specified baranalysis of along-track satellite altimetry data [Ray and otropic tides at their horizontal boundaries [e.g., Commins

Mitchum, 1996]. Several previous comparisons of modeled et al., 2001; Kang et al., 2000; Merrifield et al., 2001].

## HYCOM vs along-track altimetric estimates of surface signature of $M_2$ internal tides (Shriver et al. 2012)

ullet Computed from high-passing total  $M_2$  signal



Now on to today's main topic...internal gravity wave spectrum

### Internal gravity wave kinetic energy frequency spectra (Müller et al. in press GRL)

41.03° N /175.02° W

• Note logarithmic smoothing employed.

10<sup>2</sup>



41.94° N /151.92° W

### Internal gravity wave kinetic energy frequency-horizontal wavenumber spectra (Müller et al. in press GRL)



Nonlinear internal gravity wave kinetic energy frequency-horizontal wavenumber spectral transfers (Müller et al. in press GRL)

•  $T(k,\omega) = Re[-\widehat{\vec{u}}^* \cdot [\widehat{\vec{u}} \cdot \nabla \vec{u}]]$ 



## Application of frequency-horizontal wavenumber spectrum to altimetry

• We will compute the frequency-horizontal wavenumber spectrum of SSH to separate low-frequency, internal tide, and non-tidal internal wave contributions.

## Frequency spectra of temperature (Bassette et al. and Luecke et al. in preparation)



#### Summary

- Models with concurrent atmospheric and tidal forcing are beginning to develop an internal gravity wave spectrum, especially as resolution increases.
- Frequency-horizontal wavenumber spectrum of modeled internal gravity wave kinetic energy fills in along predicted linear dispersion curves, and fills out more completely with higher model resolution.
- Kinetic energy frequency spectra lie closer to observations, and nonlinear interactions are more vigorous, when model resolution is increased.
- We are now investigating internal gravity wave temperature variance.

