

Overview of HYCOM activities at SHOM

Stéphanie Louazel, Stéphanie Corréard, Rémy Baraille, Annick Pichon, Cyril Lathuilière, Audrey Pasquet, Emeric Baquet

French operational system that provides open ocean forecast

Development of regional and coastal models

Range: from research to operational systems

Purpose: to have a forecast system that provides oceanographic data for both civil and military uses

Outline

- 1- Areas of interest
- 2- HYCOM developments
- **3- Operational systems**

1- Areas of interest

Bay of Biscay model 1', 40 layers

- Thermal fronts,
- Surges,
- Tide and internal tide,
- Solitons,
- Eddies dynamics,
- Slope currents,
- River plumes, ...

Mediterranean model 1', 32 layers

- Mediterranean Northern Current,
- Surges,
- Deep convection,
- Eddies dynamics,
- River plumes ...

1- Areas of interest

Iberian model 1', 32 layers

Northwestern Indian model 1/20°, 40 layers

Gulf of Guinea model
Academic configuration

- ✓ Thermal fronts,
- ✓ Tide and internal tide,
- ✓ Solitons
- ✓ Density current,
- **√** ...

- ✓ Density currents,
- ✓ Eddies dynamics,
- **√** ..

- ✓ River plumes,
- ✓ Tide and internal tide,
- ✓ Solitons
- **√** ...

1- Areas of interest

Mediterranean model SST

Indian model Salinity vertical distribution

Mesh refinement

Applications: coastal modeling (surges,...)

3 approaches:

- **HYCOM-AGRIF**
 - nested grids,
 - the software AGRIF is included in HYCOM,
 - a single executable code
- Curvilinear grid
- ✓ Using the coupler (oasis)

(also used for wave coupling)

- nested grids,
- the Oasis coupler is outside HYCOM,
- as many executable codes as grids

Mesh refinement

HYCOM-AGRIF

AGRIF

Adaptive Grid Refinement In Fortran
Free software governed by the CeCILL license

Contact: Laurent Debreu, http://www-ljk.imag.fr/MOISE/AGRIF/

Mesh refinement

HYCOM-AGRIF

SST on Aquitain area Grid 0

SST on Aquitain area Grid 1

Mesh refinement

HYCOM-AGRIF

Mesh refinement

Curvilinear grid

Barotropic configurations for Météo-France operational surge forecast systems

Northeast Atlantic grid from 400 m to 2 km

Météo-France weather warning map

-0.2

Wave coupling

Applications: coastal modeling (surges,...)

Additional terms due to wave effects in :

- Continuity equation with Stokes drift terms
- Barotropic equation with Stokes drift terms
- Momentum equation with Vortex force and wave induced non conservative forces (wave breaking,...)

Additional terms calculated in a separate module and activated with a CPP key

Coupling between HYCOM and WW3 is done via the Oasis coupler

Wave coupling

Oasis coupler

- ✓ Oasis facilitates the use of MCT (Model Coupling Toolkit from Argonne National Lab)
- ✓ Oasis is an open source under LGPL license
- ✓ In HYCOM, the main Oasis directives are computed in a separate module defining the initilization step, the grid and partition and the coupling variables
 - the exchange directives are non intrusive (oasis_put in hycom.F and oasis_get in forfun.F)
 - all coupling parameters are defined externally in a text file (oasis_info.input)
- ✓ Contacts: Sophie Valcke, Laure Coquart, https://verc.enes.org/oasis

Wave coupling

Schematic coupling on the bay of Biscay with HYCOM and WW3 using Oasis3-mct

Objective : to improve Météo-France operational surge forecast system

Barotropic configuration with HYCOM curvilinear nested grids

Non-hydrostatic effects

Applications: internal tide and solitons

Methodology:

In each layer,

- z coordinate continuity equation is integrated from bottom layer to obtain w(z) in the layer
- z coordinate w equation is integrated from bottom layer to obtain P(z) in the layer
- P(z) is integrated over the whole layer to obtain P vertical average in the layer

An additional non hydrostatic pressure term is estimated and used in the horizontal momentum equations

Assumptions:

• Non-linear terms involving vertical velocity are neglected

Non-hydrostatic effects

Academic study on a 2DV section in a 2 layer model

COMODO Project

Objective: Assessment of the numerical efficiency of ocean circulation model

- ✓ 8 research labs
- ✓ 6 numerical ocean circulation models
- ✓ 10 test cases

Series of test cases

Idealized baroclinic vortex

Idealized shelf break

Operational systems developments

Current operational systems

