A 1/12-degree global experiment with HYCOM forced with NCEP products from 1949 to 2014

Edmo J. D. Campos

Oceanographic Institute of the University of São Paulo Numerical Modeling Laboratory - LABMON

South Atlantic MOC (SAMOC)

An international program to monitor the MOC in the South Atlantic.

(amol.noaa.gov/phod/SAMOC_i nternational)

SAMBA: The SAMOC Basin-Wide Array

Observations and numerical modeling.

Shifting Westerlies

The southern hemisphere's westerly winds have strengthened and shifted towards the pole over the past decades.

Fact:

The ocean circulation in the in the upper layers is mainly driven by the winds.

Question:

What would be the ocean's response to the shifting westerlies in a global eddy-resolving ocean general circulation model (OGCM) forced with observed wind products?

Toggweiler, J.R. (2009), Science

Forcing Fields (NCEP)

-54.0

1960

1970

1980

1990

2000

2010

poleward

LABMON's Computer Resources

TUPÃ Supercomputer

Center for Weather Prediction and Climate Research Brazilian Space Research Institute (CPTEC/INPE)

CRAY XT6 with 1280 nodes with 24 processors; Maximum performance 258 Tflops 4.5 Petabytes of disc storage

Tupã: The supreme god, the creator of everything in the Tupi-Guarani mythology in Brazil.

Cluster CAIPORA

LABMON/IOUSP

SGI ALTIX-ICE with a total of 980 computer cores and ~120TB of disc

Caipora is an entity of the Tupi-Guarani mythology in Brazil. It is mischievous dark-skinned, small Indian, naked with a very long black mane

Experiments

ATIa0.25: Atlantic-Indian Ocean Basin (98W – 114E, 65S:65N); 0.25-deg; 22 sigma0 layers. Forced with NCEP-1 monthly means, 1949-2010

ATIb0.08: South Atlantic (70W-40E; 55S-10N); 1/12-deg nested in **ATIa0.25**.

- expt_17.4 Forced with NCEP-1 monthly means
- expt 17.5 Forced with NCEP-2 6-hourly products (from 2000 to 2010)

GLBa0.08: Global; 1/12-deg; 32 sigma2 layers. Forced with NCEP-1 monthly means.

- expt_18.2: kapref = 2; vsigma = 0; ticegr = 2; iceflg = 0; flxoff = 0; priver = 1
- expt_18.3: kapref = -1; vsigma = 1; ticegr = 0; iceflg = 1; flxoff = 1; priver = 1
 - * Setting-up of GLBa0.08, particularly expt_18.3, was made with the most valuable help from Alex Bozec.

ATIa0.25 and ATIb0.08

ATIa0.25 and ATIb0.08 were able to reproduce variability in the Agulhas region. Results are being published (Castellanos et al., Progr. In Oceanogr., 2015; Castellanos et al., JGR in review,; Giddy et al., JGR in review, etc...)

LONGITUDE: 19E to 23E LATITUDE: 38S to 31S

GLBa0.08

expt_18.2: kapref = 2; vsigma = 0; ticegr = 2; iceflg = 0; flxoff = 0; priver = 1

sea surf. height [02.0H] (m)

Evaluation

sea surf. height

[02.0H] (m)

Evaluation

expt_18.2

Snapshot of velocity vectors and temperature distribution at a depth of 1,900 m during Southern Hemisphere winter from the FLAME model, using climatological forcing. (Dengler et al., Nature 432, 2004)

Z (layer) : 28 TIME : 15-JAN-1960 00:00 to 15-DEC-1960 00:00 (aver $\frac{2}{3}$ 4)SET: archv_3dt HYCOM GLBa0.08 35.16 35.14 35.1 35.08 35.06 35.04 35.02 LATITUDE 34.96 34.94 34.92 34.9 34.88 34.86 20°S 34.84 34.82 65°W 55°W 25°W LONGITUDE 0.300 salinity [18.2H] (psu)

Signs of problem?

expt_18.2

Negative trends in the region-wide variables were interpreted as a sign of problem.

Thermobaric ref. states?

Ice model?

???

GLBa0.08, expt_18.3

expt_18.3: kapref = -1; vsigma = 1; ticegr = 0; iceflg = 1; flxoff = 1; priver = 1

Problems solved ...?

Evaluation

The Atlantic MOC

Climatological model AMOC (yr 15)

Garrafo et al., LOM09

Hindcast AMOC (yr 2005)

AMOC (Sverdrups)(box smoothed by 12 pts on Y)

Variability of the AMOC ar 34.5°S

Double-celled Gyre in the South Atlantic?

In the 1/12-degree simulation, the South Atlantic subtropical gyre is splitted in two cells, as suggested by previous work (e.g: Tsuchya, 1985; Memery et al, 2000; and Viana and Menezes, 2011);

Viana & Menezes, JGR 2011

Conclusions

- Model runs fine for the entire period;
- Large scale features seems to be in accordance with other numerical experiments;
- Double-Celled gyre in the south Atlantic;
- More diagnostics and Model-Data comparison needed

