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Outline

= The CORE project
= HYCOM results in CORE-II
= |mprovements to the HYCOM-CICE global 0.72° configuration

= Addition of a new Bulk Formulation (Large and Yeager [2004])
= Modification of the method to coupled ocean and ice

= Addition of a spatially varying SSS relaxation option

= Change in the calculation of the thermobaric corrections

= Comparison between the new CORE-II simulation and the old one

= On-going work




The CORE project

= The CORE project provides a framework to compare the behavior of different coupled
Ocean-lce models forced with the same atmospheric fields.

= Same protocol:

= Same 300 years atmospheric forcing (CORE-l (climatology) or CORE-II
(interannual 1948-2007))

= Preferably with the same bulk formulation (Large and Yeager 2004)
= Normalization of the salt flux at the surface to guarantee a constant global salinity

= Surface Salinity relaxation of 4years over 50m.
= Publications :

= CORE-I
» Griffies et al. (2009) Ocean Modelling
= CORE-Il (Ocean Modelling)

= Danabasoglu, G. et al. (2014) published (AMOC mean state)
» Griffies et al. (2014) published (Sea Level)
= Downes et al. (2015) accepted (Southern Ocean water mass)




HYCOM in the CORE project

CCSM3-HYCOM'’s EXPERIMENT:

CORE-I experiment performed by Jianjun Yin
CORE-II experiment performed by Jianhua Lu

HYCOM version 2.2.18

CSIM as active ice component

POP Bipolar gx1v3 (~1°) global grid

Bathymetry from 2 min gridded relief data of National Geophysical Data Center
Large and Yeager (2004) through the coupler

Advection of rho and S => non conservation of heat

POP Grid 320x384

Normalization of the salt flux at the surface (CORE-II)
SSS-relaxation: 20 days/30m (CORE-II)
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Figure 3: Time-mean AMOC plotted in depth (km) and latitude space. The positive and negative contours indicate clockwise and =—————GFDL-MOM
counter-clockwise circulations) respectively. In MIT, AWI, MRI-F, MRI-A, FSU, BERGEN, and GISS, the AMOC distributions ACCESS
do not include the high latityde North Atlantic and / or Arctic Oceans, and hence are masked. Unless otherwise noted, the TP

time-mean refers to the 20-yeqr means for years 1988-2007, corresponding to simulation years 281-300, in all the figures.
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Figure 1: AMOC annual-mean maximum transport time series at 26.5°N for the entire 300-year integration length.

Dan abasoglu et aI . 20 14 series are smoothed using a five-point box car filter. The repeating 60-year forcing cycle, corresponding to calend§

1948-2007, is indicated by the dashed lines in each panel.



Drake Passage transport (Sv)
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Standard HYCOM-CICE configuration

HYCOM-CICE EXPERIMENT:

HYCOM version 2.2.74
CICE v4.0 as active ice component

Partial coupling between Ocean and Ice (only ice cover, ice velocities are used and
ice flux are re-calculated by the energy loan model) ——

Tripolar HYCOM Standard 0.72° global grid HYCOM Grid 500x382
Bathymetry from 2-minute NAVO/NRL DBDB2 ° ’
Advection of T and S => conservation of heat
Kara (2004) bulk formulation — <—
SSS-relaxation: 30 days (default) (—
CORE-II atmospheric forcing interpolated

in time to get a 6-hour frequency
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The Large and Yeager bulk formulation
VS.
the Kara bulk formulation

- |
100E 160W BOW 40E

Longitude
{): Min=-1.63, Max= 2.13, Int=0.10

100E
Longitude
(): Min= -4.72, Max= 10.32, Int= 0.30
-3.00 =240 -1.80 -1.20 -0.80 0.00 080 1.20 1.80 2.40 3.00 -3.00 =240 -1.80 -1.20 0.60 0.00 0.60 1.20 1.80 240 3.00 -1.00 -0.80 -0.60 -0.40 -0.20
Temperature

0.00

0.20 0.40 0.60 0.80 1.00

3.75
—— Large and Yeager

(]
~
=)

—— Kara

In 10 years, difference of :
= ~0.20°C in SST 3.55

Temperature (C)

w w

o o

S o
\\\\‘\Ill\\\\‘\\\\

1948 1950 1952

1954

1956

. Time (year)
= 0.03°C in global Temperature . | Sea Surface Height
= 2cm in SSH o

SSH (m)

0.04

0.02
0.00

1948 1950 1952
Time (year)

1954

w{\byj

1956



HYCOM-CICE coupling

= 2 experiment of 10 years with CORE-II (1948-1957) with SSS relaxation of 4 years/50 m:

» Standard configuration: partial coupling between Ocean and Ice (only ice cover, ice velocities
are used and ice flux are re-calculated by the energy loan model)
= Full flux exchange: using the heat and salt ice fluxes from CICE

Sallnlty bias from Lewtumi\
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Sensitivity of the Southern ice cover/concentration
to SSS relaxation
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3 experiment of 10 years with CORE-Il (1948-1957)
=  SSS relaxation of 4y/50m, 6months/50m and 30days/50m

= Strong difference between 30 days and 6months.
= Loss of the ice cover with 4 years eventually (not shown)
— 6 months still reasonable
= Spatially varying SSS relaxation for CORE-Il : 4years/50m everywhere excepf
6months/50m over the Antarctic Region
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= Density inversion for sigma-2
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the density profile for the
calculation of the pressure gradient
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Thermobaric corrections are not
the same between low/mid-
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leading to instabilities in the
transition zone
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Latitude

Latitude

Thermobaric corrections

(Sun et al. 1999)
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New HYCOM-CICE set-up

HYCOM-CICE EXPERIMENT:

HYCOM version 2.2.74

CICE v4.0 as active ice component

Full coupling between Ocean and Ice

Tripolar HYCOM Standard 0.72° global grid
Bathymetry from 2-minute NAVO/NRL DBDB2
Large and Yeager bulk formulation

Spatially varying SSS-relaxation: 4years/50m everywhere except 6months/50m in
Antarctic region

Normalization of the salt flux at the surface

New thermobaric formulation

5 cycles of 1948-2007 CORE-II atmospheric forcing
Levitus PHC2.1 initial conditions

Advection of Tand S




CCSM-HYCOM Atlantic Streamfunction 281-300 cyc 1 z-coord

Atlantic MOC
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=> Other results on AMOC in Danabasoglu et al. 2015, submitted




Drake Passage transport and BSF

Drake Passage transport (Sv)
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Other diagnostics

Other results will be found in CORE-II special issue of Ocean Modelling:

= For the CCSM3-HYCOM simulation:
= in Wang et al. (2015) submitted, on the Arctic Ocean sea-ice and
freshwater

= For the HYCOM-CICE simulation:
= in Danabasoglu et al. (2015), submitted, on the AMOC variability
= in Farneti et al. (2015), submitted, on the Southern Ocean circulation
= in Tseng et al. (2015), submitted, on the Pacific Ocean
= in llicak et al. (2015), submitted, on the Arctic Ocean hydrography




On-going Work

= HYCOM as an alternative ocean component to POP in CESM:
= Bipolar gx1v6 global grid and 2 min NGDC bathymetry
= Active Ocean-Ilce (G-compset) working (CORE-I atmospheric forcing)
= Active Ocean-Ice-Atmosphere (B-compset) working
— Evaluations are done in comparison with HYCOM-CICE and CESM-POP for
the active Ocean-Ice case and with CESM-POP for the active Ocean-Ice-
Atmosphere case
= Comparison with HYCOM-CICE-NAVGEM for different resolutions
(0.72°,0.36°,0.08°) on the seasonal, annual, decadal time-scale.

= Comparison of HYCOM behavior between 3 different grids and bathymetry:
= HYCOM GLBt0.72 tripolar grid and DBDB2 bathymetry
= POP gx1v6 bipolar grid and NGDC bathymetry
= NEMO ORCAO.5 tripolar grid and ETOPOZ2 Bathymetry




