

Global Ocean Forecasting

Naval Oceanographic Office

2 - 4 June 2015

Danish Meteorological Institute Copenhagen, Denmark

David Rosenfield

Ocean Forecaster / Model Operator Oceanographic Department Naval Oceanographic Office Stennis Space Center, Mississippi, U.S.A

Naval Oceanography

Ocean Modeling and Forecasting

Global - Hybrid Coordinate Ocean Model (G-HYCOM)

- Forecasts 3D Temperature, Salinity, Currents, Elevation
 - Out to 168 hours (7 days) every 3 hours
- Present global resolution 1/12 deg (9km / 5nm)
 - Future resolution 1/25 deg (2016) (3.8km /1.8nm)
 - 40+ vertical layers
 - Pressure, depth, sigma coordinates as needed
- FNMOC NAVGEM atmospheric forcing
- Assimilates SST / SSH / surface obs / profile data – using the Navy Coupled Ocean Data Assimilation (NCODA) system
- Global service to NOAA, others daily
 - HYCOM fields to NOAA
 - Navy/National Ice Center Ice Forecasts

Naval Oceanography

Arctic Cap Nowcast / Forecast System (ACNFS 3.0)

HYCOM/NCODA/CICE

- CICE on a ~3.5 km Arctic grid
- HYCOM at 1/12º
- NCODA 3DVar data assimilation

Regional Navy Coastal Ocean Model (NCOM)

Sea Surface Temperature along 37.25°N

Global HYCOM (1/12°)

- → USEAST-NCOM (1/30°)
- → Chesapeake NCOM (1/216°)

HYCOM provides boundary conditions to Regional NCOMs with grid resolutions from 3.7 to 0.3 km

Setup and evaluation of regional scale NCOMs generally takes about 6 months whereas 0.5-0.3 km nests takes about 1-3 months.

High resolution bathymetry is crucial

Real-Time Data Handling - Input Ocean Models

Other Formats: NetCDF **Emerging Technologies NAVO Proprietary Formats** Hexadecimal Encoding

Worldwide Coverage

24/7 Data Input 70,000+ Unique **Observations a Day**

Satellite Sea Surface Temperature Sources

NAVO Processed

N-18/19 AVHRR GAC

N-19 AVHRR LAC

METOP - A/B AVHRR GAC

NPP VIIRS

METOP - A/B AVHRR FRAC

GOES-E/W

Group for High-Resolution Sea Surface Temperature (GHRSST) Processed

MSG

Windsat

Satellite Sea Surface Altimetry Sources

Navy - Department of Defense Supercomputing Resource Center (DSRC)

Procurement	FY15 TFLOPS/CORES	FY16 TFLOPS/CORES	FY17 TFLOPS
IBM iDataPlex *	325/15,600	325/11,728	
CRAY XC40		598/20,096	1,371
Technical Insertion - 17**			359
Total	325/15,600	923/31,824	1,730

^{*}Removed from service 12/31/2016

^{**}Assumes Moore's Law increase and Q4 availability

Global HYCOM Output File Sub-Regions

- G-HYCOM has too large an output to manage as one region
- Divided into 18 regions at 3 hourly intervals
- Each file has temperature, salinity, currents, and elevation

Global Ocean Forecasting Future Plans

Next version of HYCOM is undergoing testing for transition at NAVO

- Merges Global HYCOM and ACNFS
- Will provide ice forecasts in the Arctic and the Antarctic
- Increases the number of layers from 32 to 41, horizontal resolution unchanged
- Improved altimetry assimilation
- Ice model will include assimilation of more satellite data and assimilation of the analyzed ice edge
- Next major HYCOM update scheduled to be operational in 2017
 - Horizontal resolution increased to 1/25 degree and includes tides in the model

Year	НҮСОМ	Assimilation	Ice	Tides	Waves
2013	1/12 deg, 32 layers	3DVAR	Energy Ioan	OSU	
2015	1/12 deg, 41 layers	3DVAR	CICE	OSU	
2017	1/25 deg, 41 layers	3DVAR	CICE	UT (Baroclinic)	
2017	1/25 deg, 41 layers	4DVAR	CICE	UT (Baroclinic)	WW3
2018 Coupled HYCOM – NAVGEM – CICE – WW3					

Oceanographic Feature Analysis

@ each grid point

- Ocean Forecasters use model data and observations to locate features of interest to the Fleet
- Satellite Sea Surface Height Anomaly passes overlaid on **HYCOM Sea Surface Elevation**

HYCOM Model Drift Path Evaluation

- Comparison of Australian drifter observations to HYCOM
- HYCOM produces reasonable forecasts along these frontal boundaries

- Inertial oscillations are difficult to reproduce because of wind event timing
- Background is mean water temperature from HYCOM model for this period

HYCOM Model Drifter Speed Evaluation

Drifter Speeds and HYCOM Drift Speeds (at Drifter Locations)

- HYCOM captures the distribution of speeds indicated by the drifter data
- This indicates HYCOM is producing an accurate representation of the flow type in the region

- However, the speeds are uncorrelated
- This indicates that the timing and location of flow features are not accurate

HYCOM Model Evaluation

Global HYCOM Model / Data Comparisons

- HYCOM generally has good correlation between model and observations in deep water
- Data dependent
 - Satellite altimetry quality degrades near coasts
 - Gaps in profiling floats
- Tidally dominated regions have issues
- Uses databases that need tuning
 - o Rivers too much freshening of Gulf of Alaska
- NAVOCEANO has setup higher resolution regional models with tides where required

Surface Salinity

Questions?

