Validation of Global Ocean Forecast System (GOFS) 3.1

O.M Smedstad¹, E.J. Metzger², P.J. Hogan, P.G. Posey, A.J. Wallcraft², D.S. Franklin¹, L. Zamudio³ and M.W. Phelps⁴

Vencore, Inc.
 Naval Research Laboratory
 Florida State University
 Jacobs Engineering

Layered Ocean Model Workshop 2-4 June 2015 Copenhagen, Denmark

GOFS Descriptions and Status

GOFS 3.0: 1/12° 32 layer HYCOM

NCODA-3DVAR

Modular Ocean Data Assimilation System (MODAS)

energy-loan ice

Operational system running on Navy DSRC IBM iDataPlex computers

GOFS 3.1: 1/12° 41 layer HYCOM (9 additional layers in the upper ocean)

NCODA-3DVAR

Improved Synthetic Ocean Profiles (ISOP)
Los Alamos Community Ice CodE (CICE)

Currently in operational testing mode (OPTEST)

GOFS 3.5: 1/25° 41 layer HYCOM (Transition scheduled for Fall 2016)

NCODA-3DVAR

ISOP

CICE

tides

Arctic Cap: Sub region of GOFS 3.0 north of 40°N

CICE

GOFS 3.1 Configuration

- Horizontal grid: 1/12° equatorial resolution
 - 4500 x 3298 grid points, ~6.5 km spacing on average, ~3.5 km at pole
- Mercator 79°S to 47°N, then Arctic dipole patch
- Vertical coordinate surfaces: 41 for σ_2^*
- KPP mixed layer model
- Community Ice CodE (CICE v4) sea-ice model
 Coupling between ocean and ice via the Earth System
 Modeling Framework (ESMF)
- Surface forcing: wind stress, wind speed, thermal forcing, precipitation, relaxation to climatological SSS
- Monthly river runoff (986 rivers)
- Initialize from January climatology (GDEM 4.2) T and S
 - No subsurface relaxation to climatology

HYCOM/NCODA/CICE

* ocean observations (sst, profiles, altimeter) and ice concentration observations

Navy **NAVy Global Atmospheric Atmospheric Forcing Prediction System** Coupled 0.5° NAVGEM Ocean Data **Assimilation** (NCODA)* Ocean currents, **HYbrid** Community sss and sst Coordinate Ice Hourly exchange+ Code Ocean Ice concentration. ice temperature, (CICE V4) Model ice drift. shortwave (HYCOM) **Model Output** through ice Ice Drift Ice Thickness **First Guess** Ice Concentration 24-hour forecast **Ocean Currents** + hourly fields exchanged via **Ocean Temp**

Earth System Modeling Framework (ESMF)

Ocean Salinity

Navy Coupled Ocean Data Assimilation

3Dvar - simultaneous analysis ice concentration and 5 ocean variables: temperature, salinity, geopotential, layer pressure, velocity (u,v)

GOFS 3.1 Runstream

NCODA analysis windows centered at this time using receipt time and FGAT using observations received since the previous analysis and looking back:

-96 hours for profile data

-120 hours for altimeter data

- 1) Perform first NCODA analysis centered on tau = -12
- 2) Run HYCOM using incremental updating (\blacksquare) over the first 6 hours
- 3) Run HYCOM in forecast mode out to tau = 168

FGAT – First Guess at Appropriate Time

1/12° Global HYCOM/CICE

Snapshot of Sea Surface Temperature

GOFS 3.1 Temperature Observations

Pacific Ocean

Ocean Validation Regions Used in the Validation Test Report (VTR)

Ocean Validation – Temperature Profiles GOFS 3.0 vs. GOFS 3.1 Nowcast Time

Red curves: GOFS 3.0 Black curves: GOFS 3.1

Temperature (°C) vs. depth error analysis in the upper 500 m against unassimilated profile observations at the "nowcast" time for the eight regions defined on the previous slide spanning the hindcast period August 2013 – April 2014. The gray lines in the ME plots are the tolerances set by NAVOCEANO for the temperature bias in the GOFS 3.0 OPTEST

Ocean Validation – Temperature Profiles GOFS 3.1 Forecast Horizons (5,10,14 days)

Mean

RMS

Mean

RMS

Black curves: Nowcast

Cyan curves: 5-day forecast

Red curves: 10-day forecast

Green curves: 14-day forecast

Temperature (°C) vs. depth error analysis in the upper 500 m against unassimilated profile observations for the eight analysis regions for the 14-day forecasts initialized from the hindcast period August 2013 – April 2014.

Not a lot of forecast skill degradation Out to 14 day forecast horizon.

Ocean Validation – Mixed Layer Depth GOFS 3.0 vs. GOFS 3.1Nowcast Time

GOFS 3.1 includes 2-way nested CICE 30-day animation starting on 7 April 2015

Ice Concentration (%) Ice Thickness (m)

Black line is the independent ice edge analysis from the National Ice Center (NIC)

Polar (Ice) Validation Regions

Compare independent observations against GOFS 3.1 and ACNFS hindcast output (1 June 2012 – 31 May 2013)

Ice Edge Error **Arctic**

Ice edge error (km) at nowcast time vs. time, (1 June 2012 – 31 May 2013)

		Due	e to an	
are r ice ed		assi	milation	
	edge	erro	or that	
		has	been	
		corr	rected	

Mean Error

38.4 km

43.6 km

12%

28.8 km

25.6 km

-13%

The GOFS 3.1 and ACNFS 5% ice concentration isolines compared against the independent National Ice Center analysis

Mean Ice Edge Location Error (km)

Antarctic

Region	GOFS 3.1		
Amery Sea	34.2		
Shackleton Sea	30.6		
Ross Sea	29.2		
Amundsen Sea	37.0		
Bellinghausen Sea	39.9		
Weddell Sea	47.3		

Validation period is 1 June 2012 – 31 May 2013

Take-home message: Ice edge errors in the Southern Hemisphere have similar magnitudes as ice edge errors in the Northern Hemisphere

"IceBridge" Flights (in lieu of satellite obs)

- Black arrows indicate flight data comparison shown on the next slide
- GOFS 3.1 has generally lower thickness error north of Alaska (Beaufor Sea) and the Canadian Archipelago
 - ACNFS generally has lower thickness error north of Greenland

Ice Thickness vs. IceBridge

Select 2013 IceBridge Thickness Comparisons

GOFS 3.1
ACNFS

Flight	Bias		Absolute Bias		RMS Difference	
	GOFS 3.1	ACNFS	GOFS 3.1	ACNFS	GOFS 3.1	ACNFS
20130321	-0.43	0.60	0.98	0.90	1.22	1.09
20130322	0.39	0.98	0.54	1.08	0.67	1.33
20130323	0.23	1.04	0.55	1.33	0.77	1.59
20130324	0.59	0.82	0.82	1.01	1.05	1.32
20130326	-0.76	0.76	0.96	1.09	1.23	1.32
20130327	-1.89	-1.11	1.91	1.45	2.14	1.93
20130422	-0.57	0.80	0.83	0.85	1.00	0.99
20130424	-1.33	-0.11	1.40	0.62	1.87	0.94
20130425	-0.28	1.46	0.63	1.47	0.79	1.55

Ice Drift

- Compared 24-hour forecast ice drift against 129
 International Arctic Buoy Program drifting buoys
- Initial results showed GOFS 3.1 was 35% too fast and ACNFS was 15% too fast
- GOFS 3.1 used ocean currents averaged over 3 m but ACNFS used currents averaged over 10 m
 - Options:
 - Use consistent depth for averaging ocean currents
 - Modify the ice-ocean drag coefficient
- Ice-ocean drag coefficient doubled and a new Jan-Aug 2014 hindcast was integrated to compute new ice drift errors

Drifting Buoy Comparison

Twenty-four hour separation distance (km) between the International Arctic Buoy Program (IABP) ice drifting buoy 169312003533373 and GOFS 3.1 (black) and ACNFS (red) over the period 15 March - 3 September 2014. The mean separation distance for GOFS is 7.0 km and 7.5 km for ACNFS.

20

Ice Drift

Observed and forecast ice speed (cm/s) against all IABP drifters

				GOFS -	ACNFS -	
Variable	Observed	GOFS 3.1	ACNFS	Observed	Observed	
Statistics over the period January-August 2014						
Speed	8.78	9.97	9.59	1.19 (14%)	0.81 (9%)	
Statistics over the period January-March 2014						
Speed	7.90	9.43	9.96	1.53 (19%)	2.06 (26%)	
Statistics over the period June-August 2014						
Speed	10.41	11.20	9.87	0.79 (8%)	-0.54 (-5%)	

- ACNFS has lower overall (Jan-Aug) error
- GOFS 3.1 has lower error in the winter (Jan-Mar)
- ACNFS has lower error in summer (Jun-Aug)
- Even though ACNFS slightly outperformed GOFS 3.1 in ice drift, the NIC agreed that in the net, GOFS 3.1 outperformed ACNFS (edge, concentration, thickness, etc.)

High resolution ice assimilation

- SSMIS ≈ 25 km resolution
- AMSR2 ≈ 10 km resolution
- IMS ≈ 4 km resolution
- Implemented 2 Feb 2015 in real-time GOFS 3.1 runstream
- Significant improvement in edge location error

GOFS 3.1 ice edge location error (km) using various ice assimilation data sources

43116 44116431					
	GOFS 3.1				
Region	SSMIS	AMSR2 and IMS	AMSR2 + SSMIS and IMS		
GIN Sea	72	19	19		
Barents/Kara Seas	47	22	22		
Laptev Sea	59	24	24		
Bering/Chukchi/ Beaufort	57	22	22		
Canadian Archipelago	83	31	31		
Total Arctic	64	25	25		
Percent improvement over SSMIS		62%	62%		

GOFS 3.5 Demonstration

1/25° HYCOM/CICE/NCODA with tides running in demonstration mode at Navy DSRC on Cray XC30

Total SSH (including the barotropic tidal signal)

GOFS 3.5 Demonstration

Steric SSH reveals the generation locations and propagation of internal waves

GOFS 3.5 Demonstration

1/25° HYCOM/CICE/NCODA with tides running in demonstration mode at Navy DSRC on Cray XC30

Thanks!

Questions?

Observation Impact: Concept

Observations move the forecast from the background trajectory (X_b) to the trajectory starting from the new analysis (X_a)

Observation Impact: Equations

$$\frac{\partial J}{\partial x_f} = e_f - e_g \qquad \longleftarrow \qquad \begin{array}{l} \text{Forecast error cost function} \\ e_f = (x_{48} - x_0)(x_{48} - x_0) \\ e_g = (x_{72} - x_0)(x_{72} - x_0) \end{array}$$

$$\frac{\partial J}{\partial x_a} = L^T \frac{\partial J}{\partial x_f} \qquad \longleftarrow \qquad \begin{array}{l} \text{Initial condition sensitivity} \\ L^T \text{ adjoint forecast model} \end{array}$$

$$\frac{\partial J}{\partial \nu} = K^T \frac{\partial J}{\partial x_a} \qquad \longleftarrow$$

Observation sensitivity

K^T adjoint assimilation system

$$\delta e_f^g = \langle (y - Hx_b), \frac{\partial J}{\partial y} \rangle$$
 Impact for each observation Observation innovation in observation space

Observation Impact: Interpretation

For any observation assimilated, if ...

 δe_f^g < 0.0 the observation is BENEFICIAL - forecast errors decrease

 δe_f^g > 0.0 the observation is NON-BENEFICIAL - forecast errors increase

Non-beneficial impacts:

- not expected, all observations should decrease forecast error
- if occurs (and is persistent), look for problems in data QC, instrument accuracy, model error, specification of assimilation error statistics (observation error, background error)

Observation Data Impact Argo Float Temperature

Blue: Positive impact on the forecast

Yellow/Red: Negative impact on the forecast

Observation Data Impact

Animal Borne Temperature

Blue: Positive impact on the forecast

Yellow/Red: Negative impact on the forecast

GOFS Descriptions and Status

GOFS 3.0: 1/12° 32 layer HYCOM

NCODA-3DVAR

Modular Ocean Data Assimilation System (MODAS)

energy-loan ice

Operational system running on Navy DSRC IBM iDataPlex computers

GOFS 3.1: 1/12° 41 layer HYCOM (9 additional layers in the upper ocean)

NCODA-3DVAR

Improved Synthetic Ocean Profiles (ISOP)
Los Alamos Community Ice CodE (CICE)

Currently in operational testing mode (OPTEST)

GOFS 3.5: 1/25° 41 layer HYCOM (Transition scheduled for Fall 2016)

NCODA-3DVAR

ISOP CICE tides

Arctic Cap: Sub region of GOFS 3.0 north of 40°N

CICE

Ocean Validation - Mixed Layer Depth

Forecast

