The impact of air-sea interaction on wind stress and ocean circulation

Jay F. Shriver¹, James G. Richman¹, Elizabeth M. Douglass¹, Deborah S. Franklin² and E. Joseph Metzger¹

^{1.} Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS 39529

^{2.} Vencore Services and Solutions, Inc., Stennis Space Center, MS 39529

Layered Ocean Model Workshop 2-4 June 2015 Danish Meteorological Institute Copenhagen, Denmark

Wind Stress in Global HYCOM

$$\tau = c_d(T_N, U_{10})|U_{10}|(U_{10})$$

- Traditionally used in HYCOM
- Function of atmospheric winds only

Wind Stress in Global HYCOM

$$\tau = c_d(T_N, U_{10})|U_{10}|(U_{10})$$

- Traditionally used in HYCOM
- Function of atmospheric winds only

This approach appears to be incomplete ...

- Chelton (2004) impact of SST resolution on wind stress accuracy
- Cornillon and Park (2001), Kelly et al. (2001) –
 Impact of ocean currents on wind stress
- Anderson et al. (2011), McClean et al. (2011) simulation improvements via the inclusion of ocean/atmosphere shear

What are the impacts of wind-current shear and the finer spatial/temporal resolution model SST in the wind stress used to force global HYCOM?

Investigate using .08° Global HYCOM

$$\tau_{classical} = c_d(T_{SH}, U_{10})|U_{10}|(U_{10})$$

$$\tau_{mbl} = c_d(T_H, U_{10})|U_{10}|(U_{10})$$

$$\tau_{mbl+shear} = c_d(T_H, U_{10} - U_H)|U_{10} - U_H|(U_{10} - U_H)$$

mbl - modified boundary layer stability

T_H - HYCOM SST

T_{SH} - smoothed HYCOM SST

 U_{10} - 10m wind

U_H – HYCOM surface current

Impact of including high-res SST and current-wind shear – stress magnitude

1 year mean - July 2012 – June 2013

Impact of including high-res SST and current-wind shear – variability

1 year RMS variability July 2012 – June 2013

What impact does the change in stress formulation have on the properties of eddies?

We identified and tracked eddies using a technique based upon the Okubo-Weiss parameter which is a measure of the difference between the deformation and vorticity of the velocity field (Okubo, 1970; Weiss, 1991; Isern-Fontanet et al., 2003; Douglass and Richman, 2014).

We first examine the number of eddies and their lifetime, radius and rotational speed for the years 2003-2007.

What impact does the change in stress formulation have on the properties of eddies?

We identified and tracked eddies using a technique based upon the Okubo-Weiss parameter which is a measure of the difference between the deformation and vorticity of the velocity field (Okubo, 1970; Weiss, 1991; Isern-Fontanet et al., 2003; Douglass and Richman, 2014).

We first examine the number of eddies and their lifetime, radius and rotational speed for the years 2003-2007.

Total number of eddies reduced by 28% (anticyclonic) and 24% (cyclonic)

What is the impact on the strength of eddies as characterized by rotational velocity?

• Pdfs from a 2003-2007 eddy census (Douglass and Richman, 2014)

Changes in eddy radius as a function of wind stress

• Pdfs from a 2003-2007 eddy census (Douglass and Richman, 2014)

Changes in eddy rotational velocity

- Rotational velocities of all eddies interpolated to a 1x1 grid
- White areas < 5 eddies

Changes in EKE as a function of wind stress

• Global average decreases 28% for mbl+shear vs classical

2003-2007 surface EKE (per unit mass)

Zonally integrated wind work/averaged wind stress magnitude and surface current magnitude

classical mbl mbl+shear

What is the impact on the wind work on the geostrophic ocean circulation?

work =
$$< \tau \cdot u_g >$$

Classical 1.20 TW

MBL 1.33 TW

MBL+Shear 1.02 TW

Wunsch (1998) .88 TW

Scott and Xu (2009) .85 – 1.0 TW

Conclusions

- The inclusion of high resolution SST acts to increase stress magnitude, changes due to the inclusion of oceanatmosphere shear changes are nearly equal and opposite in sign
- Other impacts due to the inclusion of high resolution SST and ocean-atmosphere shear
 - Stress variability is reduced in high latitudes
 - The number of eddies and their rotational velocities are reduced
 - Global average EKE is reduced
 - Global wind work is reduced

Questions?