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General Applications

e Research vessel observations can be found in many regions of the globe,
sampling a very wide range of conditions, which is ideal for all the many
applications.

e Modeling of surface turbulent fluxes (or radiation if it is measured).

e Coupled with observations of surface turbulent fluxes (or co-located
satellite data) the data are useful for evaluating and improving models of
surface turbulent fluxes. &Q\N\-

e Comparison of time integrated fluxes to numerical weather prediction
climate products.

e Comparison to routine VOS data and assessment of quality of quality of
VOS data.

e (Calibration or validation of satellite instruments. \
e Interpretation of errors in satellite data. &Q\N'
e Useful for estimating naturally occurring noise in observations.
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Ocean’s TKE Based on Observed Surface Fluxes
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Flux Model Evaluation with ASTEX

(Buoy Observations)
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Observed Surface Stresses

® Preliminary data form the
4.5 SWS2 (Severe Wind
Storms 2) experiment.
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Evaluations Using SWS2
Ship and Buoy Observations
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OAP Understanding Physics Via Differences in
Remotely Sensed and In Situ Data

In areas of strong currents, Uscat — Upbuoy Will be dominated by the current.
Areas with strong currents are often known, or can be identified in time
series (Cornillon and Park 2001, GRL,; Kelley et al. 2001, GRL).

Remaining mean differences in Uscat — Ubuoy are expected to be dominated
by wave-related variability in z,(u.) or ambiguity selection errors.

e Problems related to ambiguity selection and dealing with vectors can be
bypassed by comparing observed backscatter to the backscatter
predicted by buoy observations (Bentamy et al. 2001, JTech).
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Comparison of Backscatter Residuals

To Wave Parameters
e Differences between observed and predicted (based on observed winds)

backscatter are correlated with various wave parameter (Bentamy et al. 2001,
JTech).

e Significant wave height (the height of the 1/3 tallest waves)
e Orbital velocity
e Significant wave slope

e Orbital velocity and significant slope are highly correlated.
Correlation Coefficients

Wind Speed | Sig. Wave Orbital Sig. Wave | Tair - Tsea
(m/s) Height Velocity Slope
4106 0.32 0.38 0.33 0.18
6t08 0.32 0.41 0.33 0.20
8 1010 0.28 0.31 0.15 0.19
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49: Differences Between In Situ and Satellite

Observations Could be Due to Physics

e Surface stress modeling and QSCAT-derived stresses

Modeled Friction Velocity {m/s)

e Modeling surface stress for storm winds (Bourassa 2004 ASR)
e Direct retrieval of surface turbulent stress from scatterometer backscatter
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Evaluations of Surface Fluxes

In Climatologies
e (Quality processed R/V AWS data are ideal for evaluation of global
reanalysis fluxes (e.g., Smith et al., 2001, J. Climate).

e Sampling rates allow accurate estimation of 6 hourly integrated fluxes.
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LHF bias, NCEP — Ship (Wm™)

Where are the Problems:
Algorithm or Data

Latent Heat Flux vs. Wmd Speed ® NCEP fluxes are compared to

| | | fluxes calculated from R/V data.
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Evaluation of VOS Observation:
VOSCLIM

e Accuracies of VOS observations are not as well characterized as desired.
e Wind biases have been studied in relatively great detail.

e Lindau (1995)

e CFD Modeling of flow distortion (Peter Taylor et al.)

e Biases in SST have also been
examined.

e Biases in air temperature and
atmospheric humidity are far less
well know (Liz Kent).

e Air temperature biases are expected
to be a function of radiative heating
and ventilation.
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Changes With Time As An

Indication of Quality
e Spikes, steps, suspect values

30° identified (flagged)
\ e Examines difference in
\ . 50° near-neighbor values

’ e Flags based on threshold
\‘ | derived from observations

90“’ e Graphical Representation

e |dentifies flow conditions

", w/ severe problems

/! 1207 e Flags plotted as function of
_ ship-relative wind

150° ® % flagged in each wind bin

1807 on outer ring

® Differences between ship and scatterometer

could be used to examine flow distortion.
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: R/V Data for Scatterometer Validation

Co-location Criteria
e Automated Weather Systems

e eg., IMET
e Observations interval i1s 5 to 60s

e Record all parameters needed to calculate equivalent-neutral
earth-relative winds

® (Co-location Criteria
e Maximum temporal difference of 20 minutes (usually <30s).
e Maximum spatial difference of 25 km (usually <12.5km).

e Quality control includes checks for
e Maneuvering (ship acceleration),
e Apparent wind directions passing through superstructure.

® Details in Bourassa et al. (2003 JGR)
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Collocations with R/V Atlantis

19 July 1989 — 19 August 19949
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Collocations with R/V Oceanus

19 July 1929 — 15 September 19399
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Collocations with R/V Polarstern

19 July 1898 — 8 Septermber 199Y
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Scatlerometer Wind Speed, Uy,
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Wind Speeds QSCAT vs Ships
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® Preliminary results
e 2 months of data

® Observations from
eight research vessels

12_15 ® <25 Km apart,

.1:} 12
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<20 minutes apart.

Uncertainty was
calculated using PCA,
assuming ships and
satellite make equal
contributions to
uncertainty.
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Hmcatterometer Wind Direction

__ Wind Dlrectmns QSCAT VS Ships
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® Preliminary results

e Same conditions as
the previous plot.

e Correctly selected

ambiguities are within
45° of the green line or
the corners.

e Red dashed lines
indicates 180°
errors.

e Yellow dashed lines
indicate 90° errors.

Statistics are for
correctly selected
ambiguities.

HRMM 2" Workshop
April 2004 19



Wind Speeds QSCAT VS R/VAﬂ&TLﬁ’LS‘
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® Preliminary comparison to R/V Atlantis was much better than typical.

e All but one co-location was <5 km.
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e Uncertainties of 0.3 m/s and 4° (a factor of 4 or 5 better than average).
® Possible explanations include a small sample, and
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Variance in Speed
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Variance in Direction

180 4
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Natural Variability In

Scatterometer Observations
e Examine how much noise in scatterometer winds is due to natural variability
In surfaces winds.

e Versus variability (noise) due to the retrieval function.

e Will naturally variable winds be a serious problem for finer resolution
scatterometer winds???

e Antenna technology has progressed to the point where a 1 or 2km
product could be produced from a satellite in mid earth orbit.

e Current scatterometer wind cells are 25x25km from low earth orbit.
e There is a lot of atmospheric variability on scales <25km.

e The different looks within a vector wind cell do not occur at the same time or
location. The winds can and do change between looks.

® These changes can be thought of as appearing as noise in the observed
backscatter. When individual footprints are averaged over sufficient
space/time (space in this case), the variability due to smaller scale processes
can be greatly reduced.
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The Approach

e Taylor’s hypothesis is used to convert a spatial scale (e.g., 25, 20, 15, ,
10, 5, and 2km) to a time scale.

e Time scale = spatial scale / mean wind speed.
e A maximum time scale of 40 minutes is used.
e The non-uniform antenna pattern is considered.

e The weighting in space (translated to time) is equal to a
Gaussian distribution, centered on the center of the footprint,
and dropping by one standard deviation at the edge of the
footprint.

e Mean speeds and directions are calculated, and differences are
calculated for temporal differences of 1 through 20 minutes.
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Example of VVariability in 60s Averages
for VVarious Difference In Time

Oto4mst ———
4t08 mst ——
8to1l2mst ——
12to 16 mst ——
16to20 mst ———

| 1 1 1 1 | 1 1 1 1
15 20

4] ] 1 ] ] ] ] ]
0] a3 10

e Variance in wind speed differences (m?s-2) as a function of the
difference in time (minutes) for individual observations (one minute

averages).
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Examples for 25km footprints

m/ s

15 T T T T T T T T T T T T T T T T > 18 B

12 - 18

0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 0 - 1 0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 5 10 15 20 0 5 10 15 20

e Standard deviation in wind speed differences (left; mst) and directional
differences (right; degrees) as a function of the difference in time
(minutes).

High wind speeds have more variability in speed, but less so in direction.

e Directional variability for low wind speeds is very sensitive to the

differences in time.
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Examples for 20km footprints

m/s
1.5 T T T T T T T T T T T T T T T T > 18 B
12 - 18 12 - 18
8 — 12 8 — 12
10— —
65— 8 65— 8
4 -8 4 -8
3 -4 -4
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2-3 2—-3
g 1-2 L
0.0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 0 - 1 0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 0 - 1
[} B 10 15 20 [} B 10 15 20

e Standard deviation in wind speed (left; ms) and direction (right; degrees) as
a function of the difference in time (minutes).
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Examples for 15km footprints

m/s

15 T T T T T T T T T T T T T T T T > 18 B
12 - 18 12 - 18
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e Standard deviation in wind speed (left; ms) and direction (right; degrees) as
a function of the difference in time (minutes).
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0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 o—-1 Q 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 -1

0 5 10 15 20 0 5 10 15 20

e Standard deviation in wind speed (left; ms) and direction (right; degrees) as
a function of the difference in time (minutes).

e (Odd features are creeping into the directional analysis for high wind speeds,
presumably due to insufficient temporal resolution of the ship data.
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Examples for 5km footprints

m/ s

> 18

15

12 - 18

1.0— =

1RY ol

0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 0—-1

e Standard deviation in wind speed (ms) as a function of the difference
In time (minutes).

® Speeds, for large wind speeds, are highly sensitive to the differences in
observation time.

e [or lower wind speeds, the spatial differences in sampling dominate

the uncertainty in speed.
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Conclusions

e There are many applications for high resolution in situ observations.
e Improving flux modeling
e Validation of climatologies
e Quality assessment of VOS observations
e Validation of satellite observations
e Planning new earth observing satellites

e The satellite related applications would benefit from observations with a
sampling rate greater than once per minute.

e \Wave data and radiation data would be extremely useful for flux modeling.
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