Estimation of Satellite-derived turbulent heat flux and use of in-situ observation

Hiroyuki Tomita* and Masahisa Kubota** *JAMSTEC/IORGC **Tokai University

Contents

- Overview of Satellite-derived turbulent heat flux
- Use of high-resolution in-situ observation

How to estimate turbulent heat flux

directly method bulk method

USS TRANSLE WORK

How to estimate turbulent heat flux

Direct method (ex. Eddy correlation)

 $LHF = \rho L [w'q'] \qquad SHF = \rho C_{p} [w'T']$

Most accurate flux Hard Observation

Bulk method

LHF = ρ L Ce U (qs - q) SHF = ρ Cp Ch U (Ts - T) Easy observation Uncertainty of bulk coef. LHF: Latent Heat Flux SHF: Sensible Heat Flux w: vertical wind speed U: scalar horizontal wind q: air specific humidity T: air temperature qs: saturate specific Ts: sea surface temperature ρ : air density L : latent heat of water Cp : specific heat of air Ce: bulk transfer coef. for LHF Ch: bulk transfer coef. for SHF

How to estimate turbulent heat flux

Direct flux measurement (Eddy correlation) We can not apply 'Eddy correlation method' for satellite observation. Most accurate flux

Hard Observation

Bulk method

LHF = ρ L Ce U (qs - q) SHF = ρ Cp Ch U (Ts - T)

Easy observation Uncertainty of bulk coef. LHF: Latent Heat Flux SHF: Sensible Heat Flux w: vertical wind speed U: scalar horizontal wind q: air specific humidity T: air temperature qs: saturate specific Ts: sea surface temperature ρ : air density L : latent heat of water Cp : specific heat of air Ce: bulk transfer coef. for LHF Ch: bulk transfer coef. for SHF

How to estimate bulk parameters

Microwave Radiometer Microwave Scatterometer Infrared Radiometer

Estimation of bulk parameters

U: Wind Speed

Microwave radiometer (SSMI, AMSR, TMI...etc) Microwave scatterometer (QuikSCAT, ERS)

q: Specific humidity

Microwave radiometer (SSMI, AMSR-E, TMI...etc)

Ts (qs): Sea surface temperature

Infrared radiometer (AVHRR) Microwave radiometer (SSMI, AMSR-E, TMI...etc)

Various satellite-derived turbulent heat flux

the is tor washing me we competed the in a survey to the way with the survey a survey as a survey as

Data Sata	Grid size		Availability	
Dala Sels	Spatial	Temporal	Availability	
GSSTF2	I deg.	Daily	1988-2000	
HOAPS2	0.25 deg.	Daily	1988-2000	
J-OFURO	I deg.	3 days	1992-2000	

J-OFURO Turbulent Heat Flux (1992.01)

30"W 0° 01 30'E 60°E 90°E 120°E 150'E 180 150°W 120°W 90°W 60°W 60'N 60'N 30'N 30'N 0" 0 30°S 30'S 60°S 60°S 150'W 120'W 90'W \mathbf{O}^{*} 30'E 60'E 90°E 120°E 150°E 180° 60"W 30 W 0°

80

100

120

140

160

180

200

LHF (W/m^2)

SHF (W/m^2)

-20

-40

0

20

40

60

Various surface turbulent heat flux data sets

In-situ observation daSilva, SOC AGCM and data assimilation NCEP/NCAR Reanalysis (NRA) **ECMWF** Reanalysis (ERA) Japanese Reanalysis (JRA25) Others

WHOI OAFlux (Yu et al. 2004)

Various global turbulent heat flux

With stand & Advert

- DE LANGUNG TH

Cover all the first and the take the take the takes

Data Sets	Souurce	Grid size		Availability
Duiu Ocio	Cource	Spatial	Temporal	/ Wanability
DaSilva	in situ	I deg.	Monthly	1945-1993
SOC				1980-1993
NRAI	Reanalysis	T62 gaussian	6 hourly	1948-2003
NRA2				1948-2003
ERAI5		1125 dog		1979-1993
ERA40		1.125 deg.		1979-2001
GSSTFI	Satellite	I deg.	Daily	1988-2000
GSSTF2				1988-2000
HOAPSI		0.5 deg		1992-1998
HOAPS2		0.25 deg.		1992-2001
J-OFURO		I deg.	3 days	1992-2000

Inter-comparison

SOC(in-situ)

J-OFURO (satellite)

NRAI (reanalysis)

Mean fields of latent heat flux during 1992-93

Inter-comparison

Zonally averaged latent heat flux for mean fields during 1992-93

Accuracy

stanis ton superior

Comparison with moored buoy

TAO/TRITON Buoys

65 buoys every hour, 1992-2000 Wind Speed, Relative Humidity, SST

> 3 days mean turbulent heat flux

JMA Buoys

NDBC Buoys

3 buoys every 3 hours, 1974-2000 Wind Speed Dew point temperature Surface Air Pressure SST

26 buoys every hour, 1992-2000 Wind Speed,

Dew point temperature, Surface Air Pressure,

3 days mean turbulent heat flux

SS

Accuracy of satellite derived LHF

J-OFURO vs Buoy				
1992-2000				
3 days mean				
Bias	-8.54 w/m ²			
RMS	49.43 W/m ²			
RMSR	48.69 W/m ²			
Corr.	0.68			

Kuroshio Extension Observation buoy NOAA PMEL Location: 144.5E, 32.3N 2004.06.17~2005.10.xx

Surface Meteorological Parameters Ts, Ta, RH, U, V 10 min average

Comparison with buoy flux during 2004 Pre-extended J-OFURO LHF 2004 (1year) COARE 3.0, Qa from Bentamy's mthod

VS

 KEO buoy

 KEO : 144.5E, 32.3N

 2004.06.17-12.31, 6 monts

 TAO array: (50 buoys)

 High resolution

 data

 -Daily mean

 (10min average)

Comparison with KEO buoy flux

Comparison of W and Qa with KEO buoy

Comparison of W and Qa with KEO buoy

Future developments

Use of multi-satellite
Merged/hybrid product
Yu et al. (2005)WHOI OAFlux
Jiang et al.(2005)

Data availability of satellite-derived wind speed and surface air specific humidity

The top was in me second the second the trans with the second with the second and a second as the se

Simulation of multi-satellite

Impact for wind speed on LHF RMS (W/m^2)

Impact for specific humidity on LHF RMS (W/m^2)

Use of high-resolution in-situ observation

Tor wash's non-secure to the sec

STRACTO

Use of high-resolution in-situ observation

In-situ data SAMOS data moored buoy data

· Evaluation of satellite-derived parameters

· Improved estimation of global parameters

Estimation of sampling error Developing merged product

Kuroshio Extension Observation buoy NOAA PMEL Location: 144.5E, 32.3N 2004.06.17~2005.11.09

10 min averaged Surface Meteorological Parameters Ts, Ta, RH, U, V Radiation, precipitation

Japanese KEO (J-KEO) buoy JAMSTEC/IORGC and NOAA PMEL Location: 144°51'E, 32°21'N (close to KEO ~25km) Start from January or February 2007

10 min averaged Surface Meteorological Parameters Ts, Ta, RH, U, V Radiation, precipitation

Comparison of daily mean Qa with JMA buoy

J-OFURO Qa

ERA40 Qa

Spatial distribution of Qa

ERA40 Qa is quite inhomogeneous!!

Satellite

ERA40 Qa is inhomegenious!!

Satellite

ERA40 Qa is inhomegenious!!

and a second of the second second

ERA40

Satellite