Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J. url  doi
openurl 
  Title The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations: GLOBAL LOW-FREQUENCY EDDY APE Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 11 Pages 9126-9143  
  Keywords eddy available potential energy; mesoscale eddies; mixing; model‐ data comparison; ocean energy reservoirs; Argo  
  Abstract Global maps of the mesoscale eddy available potential energy (EAPE) field at a depth of 500 m are created using potential density anomalies in a high‐resolution 1/12.5° global ocean model. Maps made from both a free‐running simulation and a data‐assimilative reanalysis of the HYbrid Coordinate Ocean Model (HYCOM) are compared with maps made by other researchers from density anomalies in Argo profiles. The HYCOM and Argo maps display similar features, especially in the dominance of western boundary currents. The reanalysis maps match the Argo maps more closely, demonstrating the added value of data assimilation. Global averages of the simulation, reanalysis, and Argo EAPE all agree to within about 10%. The model and Argo EAPE fields are compared to EAPE computed from temperature anomalies in a data set of “moored historical observations” (MHO) in conjunction with buoyancy frequencies computed from a global climatology. The MHO data set allows for an estimate of the EAPE in high‐frequency motions that is aliased into the Argo EAPE values. At MHO locations, 15–32% of the EAPE in the Argo estimates is due to aliased motions having periods of 10 days or less. Spatial averages of EAPE in HYCOM, Argo, and MHO data agree to within 50% at MHO locations, with both model estimates lying within error bars observations. Analysis of the EAPE field in an idealized model, in conjunction with published theory, suggests that much of the scatter seen in comparisons of different EAPE estimates is to be expected given the chaotic, unpredictable nature of mesoscale eddies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 992  
Permanent link to this record
 

 
Author (up) MacKinnon, J.A.; Alford, M.H.; Ansong, J.K.; Arbic, B.K.; Barna, A.; Briegleb, B.P.; Bryan, F.O.; Buijsman, M.C.; Chassignet, E.P.; Danabasoglu, G.; Diggs, S.; Griffies, S.M.; Hallberg, R.W.; Jayne, S.R.; Jochum, M.; Klymak, J.M.; Kunze, E.; Large, W.G.; Legg, S.; Mater, B.; Melet, A.V.; Merchant, L.M.; Musgrave, R.; Nash, J.D.; Norton, N.J.; Pickering, A.; Pinkel, R.; Polzin, K.; Simmons, H.L.; St. Laurent, L.C.; Sun, O.M.; Trossman, D.S.; Waterhouse, A.F.; Whalen, C.B.; Zhao, Z. url  doi
openurl 
  Title Climate Process Team on Internal-Wave Driven Ocean Mixing Type $loc['typeJournal Article']
  Year 2017 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 98 Issue 11 Pages 2429-2454  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 66  
Permanent link to this record
 

 
Author (up) Müller, M.; Arbic, B.K.; Mitrovica, J.X. url  doi
openurl 
  Title Secular trends in ocean tides: Observations and model results Type $loc['typeJournal Article']
  Year 2011 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 116 Issue C5 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 306  
Permanent link to this record
 

 
Author (up) Nelson, A.D.; Arbic, B.K.; Zaron, E.D.; Savage, A.C.; Richman, J.G.; Buijsman, M.C.; Shriver, J.F. url  doi
openurl 
  Title Toward Realistic Nonstationarity of Semidiurnal Baroclinic Tides in a Hydrodynamic Model Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 124 Issue 9 Pages 6632-6641  
  Keywords  
  Abstract Semidiurnal baroclinic tide sea surface height (SSH) variance and semidiurnal nonstationary variance fraction (SNVF) are compared between a hydrodynamic model and altimetry for the low- to middle-latitude global ocean. Tidal frequencies are aliased by similar to 10-day altimeter sampling, which makes it impossible to unambiguously identify nonstationary tidal signals from the observations. In order to better understand altimeter sampling artifacts, the model was analyzed using its native hourly outputs and by subsampling it in the same manner as altimeters. Different estimates of the semidiurnal nonstationary and total SSH variance are obtained with the model depending on whether they are identified in the frequency domain or wave number domain and depending on the temporal sampling of the model output. Five sources of ambiguity in the interpretation of the altimetry are identified and briefly discussed. When the model and altimetry are analyzed in the same manner, they display qualitatively similar spatial patterns of semidiurnal baroclinic tides. The SNVF typically correlates above 80% at all latitudes between the different analysis methods and above 60% between the model and altimetry. The choice of analysis methodology was found to have a profound effect on estimates of the semidiurnal baroclinic SSH variance with the wave number domain methodology underestimating the semidiurnal nonstationary and total SSH variances by 68% and 66%, respectively. These results produce a SNVF estimate from altimetry that is biased low by a factor of 0.92. This bias is primarily a consequence of the ambiguity in the separation of tidal and mesoscale signals in the wave number domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1086  
Permanent link to this record
 

 
Author (up) Savage, A.C.; Arbic, B.K.; Alford, M.H.; Ansong, J.K.; Farrar, J.T.; Menemenlis, D.; O'Rourke, A.K.; Richman, J.G.; Shriver, J.F.; Voet, G.; Wallcraft, A.J.; Zamudio, L. url  doi
openurl 
  Title Spectral decomposition of internal gravity wave sea surface height in global models Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 10 Pages 7803-7821  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 372  
Permanent link to this record
 

 
Author (up) Savage, A.C.; Arbic, B.K.; Alford, M.H.; Ansong, J.K.; Farrar, J.T.; Menemenlis, D.; O'Rourke, A.K.; Richman, J.G.; Shriver, J.F.; Voet, G.; Wallcraft, A.J.; Zamudio, L. url  doi
openurl 
  Title Spectral decomposition of internal gravity wave sea surface height in global models: INTERNAL GRAVITY WAVE SEA SURFACE HEIGHT Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 10 Pages 7803-7821  
  Keywords high-frequency motions; atmospheric pressure; dynamic height  
  Abstract Two global ocean models ranging in horizontal resolution from 1/128 to 1/488 are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0:87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/258 HYCOM and 1/488 MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than 50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 993  
Permanent link to this record
 

 
Author (up) Savage, A.C.; Arbic, B.K.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Buijsman, M.C.; Thomas Farrar, J.; Sharma, H.; Voet, G.; Wallcraft, A.J.; Zamudio, L. url  doi
openurl 
  Title Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies Type $loc['typeJournal Article']
  Year 2017 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 122 Issue 3 Pages 2519-2538  
  Keywords internal gravity waves; internal tides; spectral density  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 14  
Permanent link to this record
 

 
Author (up) Scott, R.B.; Arbic, B.K.; Chassignet, E.P.; Coward, A.C.; Maltrud, M.; Merryfield, W.J.; Srinivasan, A.; Varghese, A. url  doi
openurl 
  Title Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records Type $loc['typeJournal Article']
  Year 2010 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 32 Issue 3-4 Pages 157-169  
  Keywords Eddying OGCM; Kinetic energy; Moored current meters; Model validation; Model intercomparison  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 357  
Permanent link to this record
 

 
Author (up) Skiba, A.W.; Zeng, L.; Arbic, B.K.; Müller, M.; Godwin, W.J. url  doi
openurl 
  Title On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides Type $loc['typeJournal Article']
  Year 2013 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 43 Issue 7 Pages 1301-1324  
  Keywords Tides  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 196  
Permanent link to this record
 

 
Author (up) Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F. url  doi
openurl 
  Title Assessment of shelf sea tides and tidal mixing fronts in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 136 Issue Pages 66-84  
  Keywords HYCOM; tides; seasonal tidal mixing  
  Abstract Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200&#8239;m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50&#8239;cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1032  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)