Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Kipkogei, O.; Bhardwaj, A.; Kumar, V.; Ogallo, L.A.; Opijah, F.J.; Mutemi, J.N.; Krishnamurti, T.N. url  doi
openurl 
  Title Improving multimodel medium range forecasts over the Greater Horn of Africa using the FSU superensemble Type $loc['typeJournal Article']
  Year 2016 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 128 Issue 4 Pages 441-451  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 82  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A.; Viswanthan, K.; Schmutz, D. url  doi
openurl 
  Title The potential role of land cover on secular changes of the hydroclimate of Peninsular Florida Type $loc['typeJournal Article']
  Year 2018 Publication Climate and Atmospheric Science Abbreviated Journal Clim Atmos Sci  
  Volume 1 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3722 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 833  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A.; Mishra, A. url  doi
openurl 
  Title Local onset and demise of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 1609-1622  
  Keywords Indian monsoon; ENSO; Onset of monsoon  
  Abstract This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department's rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 360  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V.; Mishra, A.; Wootten, A.; Boyles, R.; Bowden, J. H.; Terando, A. J. url  doi
openurl 
  Title Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model Type $loc['typeJournal Article']
  Year 2018 Publication Climatic Change Abbreviated Journal  
  Volume 147 Issue 1-2 Pages 133-147  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 550  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures Type $loc['typeJournal Article']
  Year 2020 Publication Atmospheric Science Letters Abbreviated Journal Atmos Sci Lett  
  Volume 21 Issue 3 Pages 9658-9689  
  Keywords  
  Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-261X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1100  
Permanent link to this record
 

 
Author Kumar, V.; Jana, S.; Bhardwaj, A.; Deepa, R.; Sahu, S.K.; Pradhan, P.K.; Sirdas, S.A. url  doi
openurl 
  Title Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India Type $loc['typeJournal Article']
  Year 2018 Publication The Open Ecology Journal Abbreviated Journal TOECOLJ  
  Volume 11 Issue 1 Pages 47-61  
  Keywords Greenhouse gases, CH4, Climate Variability, Emissions, Crop production, Rainfall.  
  Abstract Background:

This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011.

Results:

The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others.

Conclusion:

Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-2130 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1017  
Permanent link to this record
 

 
Author Buchanan, S.; Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5450 Type $loc['typeJournal Article']
  Year 2018 Publication International Journal of Climatology Abbreviated Journal  
  Volume 38 Issue 6 Pages 2651-2661  
  Keywords  
  Abstract The integrated kinetic energy (IKE) of a tropical cyclone (TC), a volume integration of the surface winds around the centre of the TC, is computed from a comprehensive surface wind (National Aeronautics and Space Administration’s (NASA) cross‐calibrated multi‐platform [CCMP]) analysis available over the global oceans to verify against IKE from wind radii estimates of extended best‐track data maintained by NOAA for the North Atlantic TCs. It is shown that CCMP surface wind analysis severely underestimates IKE largely from not resolving hurricane force winds for majority of the Atlantic TCs, under sampling short‐lived and small‐sized TCs. The seasonal cycle of the North Atlantic TC IKE also verifies poorly in the CCMP analysis. In this article we introduce proxy IKE (PIKE) based on the kinetic energy of the winds at the radius of the last closed isobar (ROCI), which shows promise for a wide range of TC sizes including the smaller‐sized TCs unresolved in the CCMP data set.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 551  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products Type $loc['typeJournal Article']
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 11 Issue 9 Pages 1080  
  Keywords Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological sub-divisions  
  Abstract We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. View Full-Text  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1026  
Permanent link to this record
 

 
Author Kumar, V.; Jana, S.; Bhardwaj, A.; Deepa, R.; Sahu, S.K.; Pradhan, P.K.; Sirdas, S.A. url  doi
openurl 
  Title Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India Type $loc['typeJournal Article']
  Year 2018 Publication The Open Ecology Journal Abbreviated Journal  
  Volume 11 Issue 1 Pages 47-61  
  Keywords  
  Abstract Background: This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011. Results: The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others. Conclusion: Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-2130 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1024  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A. url  doi
openurl 
  Title A coupled ocean-atmosphere downscaled climate projection for the peninsular Florida region Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Marine Systems Abbreviated Journal Journal of Marine Systems  
  Volume 194 Issue Pages 25-40  
  Keywords Climate projection; Peninsular Florida; bathymetry; climate simulation; future  
  Abstract A downscaled projection over the Peninsular Florida (PF) region is conducted with a Regional Climate Model (RCM) at 10 km grid spacing that incorporates interactive coupling between the atmosphere and ocean components of the climate system. This is first such application of a coupled ocean-atmosphere model for climate projection over the PF region. The RCM is shown to display reasonable fidelity in simulating the mean current climate and exhibits higher variability both in the ocean and in the atmosphere than the large-scale global model (Community Climate System Model version 4 [CCSM4]), which is used to drive the RCM. There are several features of the regional climate that RCM displays as an improvement over CCSM4: upper ocean thermal stratification, surface eddy kinetic energy of the ocean, volume flux through the Yucatan Channel, and terrestrial rainfall over PF. The projected mean hydroclimatic change over the period 2041�2060 relative to 1986�2005 over PF shows significant difference between RCM and CCSM4, with the RCM becoming significantly drier and CCSM4 moderately wetter. Furthermore, over the ocean surface, especially over the West Florida Shelf (WFS), RCM displays a wetter and a warmer surface climate compared to the CCSM4 simulation.

Our analysis of the model output indicates that improved resolution of ocean bathymetry in the RCM plays a significant role in the response of the projected changes in surface heat flux, clouds, upper ocean circulations and upper ocean stratification, which manifests with some of the largest differences from the CCSM4 projections, especially over the shallower parts of the ocean around PF. This contrast is most apparent between WFS and PF in the RCM simulation, which suggests that a future warm climate would likely produce more rain over WFS at the expense of corresponding reduction over PF, contrary to the absence of any such gradient in the CCSM4 simulation. Furthermore, in the RCM simulation, the warming of the sub-surface ocean in the future climate is owed to the combined influence of excess atmospheric heat flux directed towards the ocean from the atmosphere and the advective heat flux convergence with the relative slowing of the Loop Current in the future climate. The study demonstrates that such RCMs with coupled ocean-atmosphere interactions are necessary to downscale the global climate models to project the surface hydro-climate over regions like PF that have mesoscale features in the ocean, which can influence the terrestrial climate.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-7963 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1003  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)