|   | 
Details
   web
Records
Author Stukel, M.R.; Biard, T.; Krause, J.W.; Ohman, M.D.
Title Large Phaeodaria in the twilight zone: Their role in the carbon cycle Type $loc['typeJournal Article']
Year 2018 Publication Association for the Sciences of Limnology and Oceanography Abbreviated Journal
Volume Issue Pages
Keywords Carbon cycle; Ocean; Twilight zone, Rhizarian measurements; Aulosphaeridae
Abstract Advances in in situ imaging allow enumeration of abundant populations of large Rhizarians that compose a substantial proportion of total mesozooplankton biovolume. Using a quasi-Lagrangian sampling scheme, we quantified the abundance, vertical distributions, and sinking&#8208;related mortality of Aulosphaeridae, an abundant family of Phaeodaria in the California Current Ecosystem. Inter&#8208;cruise variability was high, with average concentrations at the depth of maximum abundance ranging from < 10 to > 300 cells m&#8722;3, with seasonal and interannual variability associated with temperature&#8208;preferences and regional shoaling of the 10°C isotherm. Vertical profiles showed that these organisms were consistently most abundant at 100&#65533;150&#8201;m depth. Average turnover times with respect to sinking were 4.7&#65533;10.9 d, equating to minimum in situ population growth rates of ~ 0.1&#65533;0.2 d&#8722;1. Using simultaneous measurements of sinking organic carbon, we find that these organisms could only meet their carbon demand if their carbon : volume ratio were ~ 1 &#956;g C mm&#8722;3. This value is substantially lower than previously used in global estimates of rhizarian biomass, but is reasonable for organisms that use large siliceous tests to inflate their cross&#8208;sectional area without a concomitant increase in biomass. We found that Aulosphaeridae alone can intercept > 20% of sinking particles produced in the euphotic zone before these particles reach a depth of 300&#8201;m. Our results suggest that the local (and likely global) carbon biomass of Aulosphaeridae, and probably the large Rhizaria overall, needs to be revised downwards, but that these organisms nevertheless play a major role in carbon flux attenuation in the twilight zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['yes']
Call Number COAPS @ user @ Serial 967
Permanent link to this record
 

 
Author Stukel, M.R.; Ohman, M.D.; Kelly, T.B.; Biard, T.
Title The Roles of Suspension-Feeding and Flux-Feeding Zooplankton as Gatekeepers of Particle Flux Into the Mesopelagic Ocean in the Northeast Pacific Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages
Keywords biological pump; carbon export; remineralization length scale; mesozooplankton ecology; pteropods; marine biogeochemistry; sinking particles; marine snow
Abstract Zooplankton are important consumers of sinking particles in the ocean's twilight zone. However, the impact of different taxa depends on their feeding mode. In contrast to typical suspension-feeding zooplankton, flux-feeding taxa preferentially consume rapidly sinking particles that would otherwise penetrate into the deep ocean. To quantify the potential impact of two flux-feeding zooplankton taxa [Aulosphaeridae (Rhizaria), and Limacina helicina (euthecosome pteropod)] and the total suspension-feeding zooplankton community, we measured depth-stratified abundances of these organisms during six cruises in the California Current Ecosystem. Using allometric-scaling relationships, we computed the percentage of carbon flux intercepted by flux feeders and suspension feeders. These estimates were compared to direct measurements of carbon flux attenuation (CFA) made using drifting sediment traps and U-238-Th-234 disequilibrium. We found that CFA in the shallow twilight zone typically ranged from 500 to 1000 m mol organic C flux remineralized per 10-m vertical depth bin. This equated to approximately 6-10% of carbon flux remineralized/10 m. The two flux-feeding taxa considered in this study could account for a substantial proportion of this flux near the base of the euphotic zone. The mean flux attenuation attributable to Aulosphaeridae was 0.69%/10 m (median = 0.21%/10 m, interquartile range = 0.04-0.81%) at their depth of maximum abundance (similar to 100 m), which would equate to similar to 10% of total flux attenuation in this depth range. The maximum flux attenuation attributable to Aulosphaeridae reached 4.2%/10 m when these protists were most abundant. L. helicina, meanwhile, could intercept 0.45-1.6% of carbon flux/10 m, which was slightly greater (on average) than the Aulosphaeridae. In contrast, suspension-feeding zooplankton in the mesopelagic (including copepods, euphausiids, appendicularians, and ostracods) had combined clearance rates of 2-81 L m(-3) day(-1) (mean of 19.6 L m(-3) day(-1)). This implies a substantial impact on slowly sinking particles, but a negligible impact on the presumably rapidly sinking fecal pellets that comprised the majority of the material collected in sediment traps. Our results highlight the need for a greater research focus on the many taxa that potentially act as flux feeders in the oceanic twilight zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1066
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)