|   | 
Details
   web
Records
Author (up) Brolley, J. M.
Title Effects of ENSO, NAO (PVO), and PDO on Monthly Extreme Temperatures and Precipitation Type $loc['typeManuscript']
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords NAO, PDO, ENSO, Climate Variability, Extremes, Stochastic
Abstract The El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Polar Vortex Oscillation (PVO) produce conditions favorable for monthly extreme temperatures and precipitation. These climate modes produce upper-level teleconnection patterns that favor regional droughts, floods, heat waves, and cold spells, and these extremes impact agriculture, energy, forestry, and transportation. The above sectors prefer the knowledge of the worst (and sometimes the best) case scenarios. This study examines the extreme scenarios for each phase and the combination of phases that produce the greatest monthly extremes. Data from Canada, Mexico, and the United States are gathered from the Historical Climatology Network (HCN). Monthly data are simulated by the utilization of a Monte Carlo model. This Monte Carlo method simulates monthly data by the stochastic selection of daily data with identical ENSO, PDO, and PVO (NAO) characteristics. In order to test the quality of the Monte Carlo simulation, the simulations are compared with the observations using only PDO and PVO. It has been found that temperatures and precipitation in the simulation are similar to the model. Statistics tests have favored similarities between simulations and observations in most cases. Daily data are selected in blocks of four to eight days in order to conserve temporal correlation. Because the polar vortex occurs only during the cold season, the PVO is used during January, and the NAO is used during other months. The simulated data are arranged, and the tenth and ninetieth percentiles are analyzed. The magnitudes of temperature and precipitation anomalies are the greatest in the western Canada and the southeastern United States during winter, and these anomalies are located near the Pacific North American (PNA) extrema. Western Canada has its coldest (warmest) Januaries when the PDO and PVO are low (high). The southeastern United States has its coldest Januaries with high PDO and low PVO and warmest Januaries with low PDO and high PVO. Although extremes occur during El Nino or La Nina, many stations have the highest or lowest temperatures during neutral ENSO. In California and the Gulf Coast, the driest (wettest) Januaries tend to occur during low (high) PDO, and the reverse occurs in Tennessee, Kentucky, Ohio, and Indiana. Summertime anomalies, on the other hand, are weak because temperature variance is low. Phase combinations that form the wettest (driest) Julies form spatially incoherent patterns. The magnitudes of the temperature and precipitation anomalies and the corresponding phase combinations vary regionally and seasonally. Composite maps of geopotential heights across North America are plot for low, median, and high temperatures at six selected sites and for low, median, and high precipitation at the same sites. The greatest fluctuations occur near the six sites and over some of the loci of the PNA pattern. Geopotential heights tend to decrease (increase) over the target stations during the cold (warm) cases, and the results for precipitation are variable.
Address Department of Meteorology
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 587
Permanent link to this record
 

 
Author (up) Brolley, J. M.
Title Experimental Forest Fire Threat Forecast Type $loc['typeManuscript']
Year 2004 Publication Abbreviated Journal
Volume Issue Pages
Keywords Forest Fire, El Nino, ENSO, Seasonal Forecast, KBDI, Keetch-Byram Drought Index, Bootstrapping
Abstract Climate shifts due to El Niño (warmer than normal ocean temperatures in the tropical Pacific Ocean) and La Niña (cooler than normal) are well known and used to predict seasonal temperature and precipitation trends up to a year in advance. These climate shifts are particularly strong in the Southeastern United States. During the winter and spring months, El Niño brings plentiful rainfall and cooler temperatures to Florida. Recent los Niños occurred in 1997-1998, one of the strongest on record, with another mild El Niño in 2002-2003. Conversely, La Niña is associated with warm and dry winter and spring seasons in Florida. Temperature and precipitation affect wildfire activity; interannual drivers of climate, like ENSO, have an influence on wildfire activity. Studies have shown a strong connection between wildfires in Florida and La Niña, with the more than double the average number of acres burned (O'Brien et al 2002; Jones et al. 1999). While this relationship is important and lends a degree of predictability to the relative activity of future wildfire seasons, human activities such as effective suppression, prescribed burns, and ignition can play an equally important role in wildfire risks. This study forecasts wildfire potential rather than actual burn statistics to avoid complications due to human interactions. This wildfire threat potential is based upon the Keetch-Byram Drought Index (KBDI). The KBDI is well suited as a seasonal forecast medium. It is based on daily temperature and rainfall measurements and responds to changing climate and weather conditions on time scales of days to months, and this index is high during dry warm weather patterns and low during wet cool patterns. The KBDI has been widely used in forestry in the Southeastern United States since its development in the 1970's, with foresters and firefighters have a good level of familiarity with the index and its applications. The KBDI is calculated daily and used as an index by wildfire managers. This study calculates wildfire potential using a statistical method known as bootstrapping. Many datasets contain approximately a half-century of data, and the limited dataset will introduce biases. Bootstrapping can remedy bias by simulating thousands of years of data, which retain the climatology for the past half-century. Bootstrapping preserves the mean but not the variance. By incorporating this method, this study will improve long-term forest fire risks that will become useful for those living or working near forests and assist in managing forests and wildfires. The Southeast Climate Consortium will also be issuing wildfire risk forecast for Florida and parts of Alabama and Georgia based on ENSO phase and the KBDI. Climate information and ENSO predictions are better served by incorporating them with known climate indices that are routinely used in the forestry sector. Wildfire managers and foresters operationally use the KBDI to monitor and predict wildfire activity (O'Brien et al. 2002). Meteorologists at the Florida Division of Forestry have demonstrated the validity of the KBDI as an indicator of potential wildfire activity in Florida (Long 2004). They showed that the value of the KBDI is not as important as the deviation from the monthly average. The wildfire risk forecast is based on the probabilities of KBDI anomalies and will present the probabilities associated with large deviations from the seasonal normal.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 622
Permanent link to this record
 

 
Author (up) Brolley, J.M.; O'Brien, J.J.; Schoof, J.; Zierden, D.
Title Experimental drought threat forecast for Florida Type $loc['typeJournal Article']
Year 2007 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 145 Issue 1-2 Pages 84-96
Keywords wildfires; Keetch-Byram drought index; drought; El Nino/Southern oscillation; spectral weather generator
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Funding USDA and NOAA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 422
Permanent link to this record
 

 
Author (up) Schoof, J.T.; Arguez, A.; Brolley, J.; O'Brien, J.J.
Title A new weather generator based on spectral properties of surface air temperatures Type $loc['typeJournal Article']
Year 2005 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 135 Issue 1-4 Pages 241-251
Keywords new weather generator; spectral methods; stochastic modeling; surface air temperatures
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 444
Permanent link to this record
 

 
Author (up) Smith, S.R.; Brolley, J.; O'Brien, J.J.; Tartaglione, C.A.
Title ENSO's Impact on Regional U.S. Hurricane Activity Type $loc['typeJournal Article']
Year 2007 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 20 Issue 7 Pages 1404-1414
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding NOAA, NASA, USDA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 429
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)