|   | 
Details
   web
Records
Author Zou, M.; Xiong, X.; Wu, Z.; Li, S.; Zhang, Y.; Chen, L.
Title Increase of Atmospheric Methane Observed from Space-Borne and Ground-Based Measurements Type $loc['typeJournal Article']
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 8 Pages
Keywords Methane increase trend; Boundary layer; Mid-upper troposphere; Satellite; AIRS
Abstract It has been found that the concentration of atmospheric methane (CH4) has rapidly increased since 2007 after a decade of nearly constant concentration in the atmosphere. As an important greenhouse gas, such an increase could enhance the threat of global warming. To better quantify this increasing trend, a novel statistic method, i.e. the Ensemble Empirical Mode Decomposition (EEMD) method, was used to analyze the CH4 trends from three different measurements: the mid-upper tropospheric CH4 (MUT) from the space-borne measurements by the Atmospheric Infrared Sounder (AIRS), the CH4 in the marine boundary layer (MBL) from NOAA ground-based in-situ measurements, and the column-averaged CH4 in the atmosphere (X-CH4) from the ground-based up-looking Fourier Transform Spectrometers at Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC). Comparison of the CH4 trends in the mid-upper troposphere, lower troposphere, and the column average from these three data sets shows that, overall, these trends agree well in capturing the abrupt CH4 increase in 2007 (the first peak) and an even faster increase after 2013 (the second peak) over the globe. The increased rates of CH4 in the MUT, as observed by AIRS, are overall smaller than CH4 in MBL and the column-average CH4. During 2009-2011, there was a dip in the increase rate for CH4 in MBL, and the MUT-CH4 increase rate was almost negligible in the mid-high latitude regions. The increase of the column-average CH4 also reached the minimum during 2009-2011 accordingly, suggesting that the trends of CH4 are not only impacted by the surface emission, however that they also may be impacted by other processes like transport and chemical reaction loss associated with [OH]. One advantage of the EEMD analysis is to derive the monthly rate and the results show that the frequency of the variability of CH4 increase rates in the mid-high northern latitude regions is larger than those in the tropics and southern hemisphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1055
Permanent link to this record
 

 
Author Liu, M.; Lin, J.; Wang, Y.; Sun, Y.; Zheng, B.; Shao, J.; Chen, L.; Zheng, Y.; Chen, J.; Fu, T.-M.; Yan, Y.; Zhang, Q.; Wu, Z.
Title Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method Type $loc['typeJournal Article']
Year 2018 Publication Atmospheric Chemistry and Physics Abbreviated Journal Atmos. Chem. Phys.
Volume 18 Issue 17 Pages 12933-12952
Keywords TROPOSPHERIC NITROGEN-DIOXIDE; PROVINCIAL CAPITAL CITIES; CRITERIA AIR-POLLUTANTS; BOUNDARY-LAYER; NORTH CHINA; HILBERT SPECTRUM; UNITED-STATES; TIME-SERIES; OZONE; EMISSIONS
Abstract Eastern China (27-41 degrees N, 110-123 degrees E) is heavily polluted by nitrogen dioxide (NO2), particulate matter with aerodynamic diameter below 2.5 mu m (PM2.5), and other air pollutants. These pollutants vary on a variety of temporal and spatial scales, with many temporal scales that are nonperiodic and nonstationary, challenging proper quantitative characterization and visualization. This study uses a newly compiled EOF-EEMD analysis visualization package to evaluate the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes over Eastern China in fall-winter 2013. Applying the package to observed hourly pollutant data reveals a primary spatial pattern representing Eastern China synchronous variation in time, which is dominated by diurnal variability with a much weaker day-to-day signal. A secondary spatial mode, representing north-south opposing changes in time with no constant period, is characterized by wind-related dilution or a buildup of pollutants from one day to another.

We further evaluate simulations of nested GEOS-Chem v9-02 and WRF/CMAQ v5.0.1 in capturing the spatiotemporal variability of pollutants. GEOS-Chem underestimates NO2 by about 17 mu g m(-3) and PM2.5 by 35 mu g m(-3 )on average over fall-winter 2013. It reproduces the diurnal variability for both pollutants. For the day-to-day variation, GEOS-Chem reproduces the observed north-south contrasting mode for both pollutants but not the Eastern China synchronous mode (especially for NO2). The model errors are due to a first model layer too thick (about 130 m) to capture the near-surface vertical gradient, deficiencies in the nighttime nitrogen chemistry in the first layer, and missing secondary organic aerosols and anthropogenic dust. CMAQ overestimates the diurnal cycle of pollutants due to too-weak boundary layer mixing, especially in the nighttime, and overestimates NO2 by about 30 mu g m(-3) and PM2.5 by 60 mu g m(-3). For the day-to-day variability, CMAQ reproduces the observed Eastern China synchronous mode but not the north-south opposing mode of NO2. Both models capture the day-to-day variability of PM2.5 better than that of NO2. These results shed light on model improvement. The EOF-EEMD package is freely available for noncommercial uses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1680-7324 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 946
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)