Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Harris, R.; Pollman, C.; Hutchinson, D.; Landing, W.; Axelrad, D.; Morey, S.L.; Dukhovskoy, D.; Vijayaraghavan, K. url  doi
openurl 
  Title A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 53-63  
  Keywords Animals; Calibration; Environmental Exposure; Fishes/metabolism; Humans; Mercury/*chemistry/metabolism; *Models, Theoretical; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations.  
  Address Reed Harris Environmental Ltd., 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23102631 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 234  
Permanent link to this record
 

 
Author (up) Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; Vijayaraghavan, K.; Holmes, C.; Atkinson, R.D.; Myers, T.; Sunderland, E. url  doi
openurl 
  Title Mercury in the Gulf of Mexico: sources to receptors Type $loc['typeJournal Article']
  Year 2012 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 119 Issue Pages 42-52  
  Keywords Air Pollutants/chemistry; Animals; Environmental Exposure; Food Chain; Geologic Sediments/chemistry; Humans; Mercury/*chemistry/metabolism; Seawater/*chemistry; Water Pollutants, Chemical/*chemistry/metabolism  
  Abstract Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web.  
  Address Reed Harris Environmental Ltd, 180 Forestwood Drive, Oakville, Ontario L6J4E6, Canada. reed@reed-harris.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:23098613 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 233  
Permanent link to this record
 

 
Author (up) Hiester, H.R.; Morey, S.L.; Dukhovskoy, D.S.; Chassignet, E.P.; Kourafalou, V.H.; Hu, C. url  doi
openurl 
  Title A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data Type $loc['typeJournal Article']
  Year 2016 Publication Methods in Oceanography Abbreviated Journal Methods in Oceanography  
  Volume 17 Issue Pages 232-250  
  Keywords Satellite data; Ocean model; Ocean color; Sea surface salinity; Shape comparison; Hausdorff distance  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-1220 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 78  
Permanent link to this record
 

 
Author (up) Lee, C.M.; Starkweather, S.; Eicken, H.; Timmermans, M.-L.; Wilkinson, J.; Sandven, S.; Dukhovskoy, D.; Gerland, S.; Grebmeier, J.; Intrieri, J.M.; Kang, S.-H.; McCammon, M.; Nguyen, A.T.; Polyakov, I.; Rabe, B.; Sagen, H.; Seeyave, S.; Volkov, D.; Beszczynska-Möller, A.; Chafik, L.; Dzieciuch, M.; Goni, G.; Hamre, T.; King, A.L.; Olsen, A.; Raj, R.P.; Rossby, T.; Skagseth, Ø.; Søiland, H.; Sørensen, K. url  doi
openurl 
  Title A Framework for the Development, Design and Implementation of a Sustained Arctic Ocean Observing System Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1044  
Permanent link to this record
 

 
Author (up) Morey, S. L.; Bourassa, M. A.; Dukhovskoy, D. S.; O'Brien, J. J. openurl 
  Title Modeling the impacts of remote forcing on hurricane storm surge Type $loc['typeReport']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 36 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 926  
Permanent link to this record
 

 
Author (up) Morey, S. L.; Bourassa, M. A.; Dukhovskoy, D.; O'Brien, J. J. openurl 
  Title Modeling the oceanic response to air-sea fluxes associated with a tropical storm Type $loc['typeReport']
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 08:3-4  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title CAS/JSC Working Group on Numerical Experimentation, Research Activities in Atmospheric and Oceanic Modeling Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 896  
Permanent link to this record
 

 
Author (up) Morey, S. L.; Bourassa, M. A.; Dukhovskoy, D.; O'Brien, J. J. openurl 
  Title Modelling the Oceanic Response to Air-Sea Fluxes Associated with a Tropical Storm Type $loc['typeReport']
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 08.03-08.04  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 35 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NSF, ONR, NASA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 902  
Permanent link to this record
 

 
Author (up) Morey, S. L.; Wienders, N.; Dukhovskoy, D. S.; Bourassa, M. A. url  openurl
  Title Impact of Stokes Drift on Measurements of Surface Currents from Drifters and HF Radar Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 3307 Boundary layer processes, ATMOSPHERIC PROCESSESDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICALDE: 4560 Surface waves and tides, OCEANOGRAPHY: PHYSICALDE: 4572 Upper ocean and mixed layer processes, OCEANOGRAPHY: PHYSICAL  
  Abstract Concurrent measurements by surface drifters of different configurations and HF radar reveal substantial differences in estimates of the near-surface seawater velocity. On average, speeds of small ultra-thin (5 cm) drifters are significantly greater than co-located drifters with a traditional shallow drogue design, while velocity measurements from the drogued drifters closely match HF radar velocity estimates. Analysis of directional wave spectra measurements from a nearby buoy reveals that Stokes drift accounts for much of the difference between the velocity measurements from the drogued drifters and the ultra-thin drifters, except during times of wave breaking. Under wave breaking conditions, the difference between the ultra-thin drifter velocity and the drogued drifter velocity is much less than the computed Stokes drift. The results suggest that surface currents measured by more common approaches or simulated in models may underrepresent the velocity at the very surface of the ocean that is important for determining momentum and enthalpy fluxes between the ocean and atmosphere and for estimating transport of material at the ocean surface. However, simply adding an estimate of Stokes drift may also not be an appropriate method for estimating the true surface velocity from models or measurements from drogued drifters or HF radar under all sea conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1008  
Permanent link to this record
 

 
Author (up) Morey, S.; Wienders, N.; Dukhovskoy, D.; Bourassa, M. url  doi
openurl 
  Title Measurement Characteristics of Near-Surface Currents from Ultra-Thin Drifters, Drogued Drifters, and HF Radar Type $loc['typeJournal Article']
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 10 Pages 1633  
  Keywords surface drifters; surface currents; HF Radar  
  Abstract Concurrent measurements by satellite tracked drifters of different hull and drogue configurations and coastal high-frequency radar reveal substantial differences in estimates of the near-surface velocity. These measurements are important for understanding and predicting material transport on the ocean surface as well as the vertical structure of the near-surface currents. These near-surface current observations were obtained during a field experiment in the northern Gulf of Mexico intended to test a new ultra-thin drifter design. During the experiment, thirty small cylindrical drifters with 5 cm height, twenty-eight similar drifters with 10 cm hull height, and fourteen drifters with 91 cm tall drogues centered at 100 cm depth were deployed within the footprint of coastal High-Frequency (HF) radar. Comparison of collocated velocity measurements reveals systematic differences in surface velocity estimates obtained from the different measurement techniques, as well as provides information on properties of the drifter behavior and near-surface shear. Results show that the HF radar velocity estimates had magnitudes significantly lower than the 5 cm and 10 cm drifter velocity of approximately 45% and 35%, respectively. The HF radar velocity magnitudes were similar to the drogued drifter velocity. Analysis of wave directional spectra measurements reveals that surface Stokes drift accounts for much of the velocity difference between the drogued drifters and the thin surface drifters except during times of wave breaking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 987  
Permanent link to this record
 

 
Author (up) Morey, S.; Wienders, N.; Dukhovskoy, D.; Bourassa, M. url  doi
openurl 
  Title Measurement Characteristics of Near-Surface Currents from Ultra-Thin Drifters, Drogued Drifters, and HF Radar Type $loc['typeJournal Article']
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 10 Pages 1633  
  Keywords surface drifters; surface currents; HF Radar; STOKES DRIFT; SEA-SURFACE; WAVES; BREAKING; VALIDATION; TRANSPORT  
  Abstract Concurrent measurements by satellite tracked drifters of different hull and drogue configurations and coastal high-frequency radar reveal substantial differences in estimates of the near-surface velocity. These measurements are important for understanding and predicting material transport on the ocean surface as well as the vertical structure of the near-surface currents. These near-surface current observations were obtained during a field experiment in the northern Gulf of Mexico intended to test a new ultra-thin drifter design. During the experiment, thirty small cylindrical drifters with 5 cm height, twenty-eight similar drifters with 10 cm hull height, and fourteen drifters with 91 cm tall drogues centered at 100 cm depth were deployed within the footprint of coastal High-Frequency (HF) radar. Comparison of collocated velocity measurements reveals systematic differences in surface velocity estimates obtained from the different measurement techniques, as well as provides information on properties of the drifter behavior and near-surface shear. Results show that the HF radar velocity estimates had magnitudes significantly lower than the 5 cm and 10 cm drifter velocity of approximately 45% and 35%, respectively. The HF radar velocity magnitudes were similar to the drogued drifter velocity. Analysis of wave directional spectra measurements reveals that surface Stokes drift accounts for much of the velocity difference between the drogued drifters and the thin surface drifters except during times of wave breaking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 985  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)