Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links (up)
Author Ford, K. M. url  openurl
  Title Uncertainty in Scatterometer-Derived Vorticity Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Vorticity, Scatterometer, Cyclone Genesis, Rrror Analysis, Tropical Storm  
  Abstract A more versatile and robust technique is developed for determining area averaged surface vorticity based on vector winds from the SeaWinds scatterometer on the QuikSCAT satellite. This improved technique is discussed in detail and compared to two previous studies by Sharp et al. (2002) and Gierach et al. (2007) that focused on early development of tropical systems. The error characteristics of the technique are examined in detail. Specifically, three independent sources of error are explored: random observational error, truncation error and representation error. Observational errors are due to random errors in the wind observations, and determined as a worst-case estimate as a function of averaging spatial scale. The observational uncertainty in vorticity averaged for a roughly circular shape with a 100 km diameter, expressed as one standard deviation, is approximately 0.5 x 10 -5 s-1 for the methodology described herein. Truncation error is associated with the assumption of linear changes between wind vectors. For accurate results, it must be estimated on a case-by-case basis. An attempt is made to determine a lower bound of truncation errors through the use of composites of tropical disturbances. This lower bound is calculated as 10-7 s-1 for the composites, which is relatively small compared to the tropical disturbance detection threshold set at 5 x 10-5 s-1, used in an earlier study. However, in more realistic conditions, uncertainty related to truncation errors is much larger than observational uncertainty. The third type of error discussed is due to the size of the area being averaged. If the wind vectors associated with a vorticity maximum are inside the perimeter of this area (away from the edges), it will be missed. This type of error is analogous to over-smoothing. Tropical and sub-tropical low pressure systems from three months of QuikSCAT observations are used to examine this error. This error results in a bias of approximately 1.5 x 10-5 s-1 for area averaged vorticity calculated on a 100 km scale compared to vorticity calculated on a 25 km scale. The discussion of these errors will benefit future projects of this nature as well as future satellite missions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 608  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)