Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
  Record Links
Author Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F. url  doi
  Title Assessment of shelf sea tides and tidal mixing fronts in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 136 Issue Pages 66-84  
  Keywords HYCOM; tides; seasonal tidal mixing  
  Abstract Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200&#8239;m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50&#8239;cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1032  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)