Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Landry, M.R.; Selph, K.E.; Decima, M.; Gutierrez-Rodriguez, A.; Stukel, M.R.; Taylor, A.G.; Pasulka, A.L. url  doi
openurl 
  Title Phytoplankton production and grazing balances in the Costa Rica Dome Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 366-379  
  Keywords grazing; plankton community; productivity  
  Abstract We investigated phytoplankton production rates and grazing fates in the Costa Rica Dome (CRD) during summer 2010 based on dilution depth profiles analyzed by flow cytometry and pigments and mesozooplankton grazing assessed by gut fluorescence. Three community production estimates, from 14C uptake (1025 +/- 113 mg C m-2 day-1) and from dilution experiments analyzed for total Chla (990 +/- 106 mg C m-2 day-1) and flow cytometry populations (862 +/- 71 mg C m-2 day-1), exceeded regional ship-based values by 2-3-fold. Picophytoplankton accounted for 56% of community biomass and 39% of production. Production profiles extended deeper for Prochlorococcus (PRO) and picoeukaryotes than for Synechococcus (SYN) and larger eukaryotes, but 93% of total production occurred above 40 m. Microzooplankton consumed all PRO and SYN growth and two-third of total production. Positive net growth of larger eukaryotes in the upper 40 m was balanced by independently measured consumption by mesozooplankton. Among larger eukaryotes, diatoms contributed approximately 3% to production. On the basis of this analysis, the CRD region is characterized by high production and grazing turnover, comparable with or higher than estimates for the eastern equatorial Pacific. The region nonetheless displays characteristics atypical of high productivity, such as picophytoplankton dominance and suppressed diatom roles.  
  Address Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0227, USA; Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275036; PMCID:PMC4889984 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 85  
Permanent link to this record
 

 
Author (up) Selph, K.E.; Landry, M.R.; Taylor, A.G.; Gutierrez-Rodriguez, A.; Stukel, M.R.; Wokuluk, J.; Pasulka, A. url  doi
openurl 
  Title Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 199-215  
  Keywords Costa Rica Dome; growth; microzooplankton; mortality; phytoplankton  
  Abstract During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Nino event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center ( approximately 0.5-0.9 day-1), but higher on the edge of the dome ( approximately 0.9-1.0 day-1) and in adjacent coastal waters (0.9-1.3 day-1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth ( approximately 0.5-0.6 day-1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m-2 day-1 on average, even during a period of reduced upwelling.  
  Address Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0227, USA; Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275025; PMCID:PMC4889980 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 112  
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Décima, M.; Landry, M.R.; Selph, K.E. url  doi
openurl 
  Title Nitrogen and isotope flows through the Costa Rica Dome upwelling ecosystem: The crucial mesozooplankton role in export flux Type $loc['typeJournal Article']
  Year 2018 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochemical Cycles  
  Volume 32 Issue 12 Pages 1815–1832.  
  Keywords Crustaceans; Diel vertical migration; Nitrogen cycle; Biological carbon pump; Nitrogen isotopes; Linear inverse ecosystem model  
  Abstract The Costa Rica Dome (CRD) is an open-ocean upwelling ecosystem, with high biomasses of picophytoplankton (especially Synechococcus), mesozooplankton, and higher trophic levels. To elucidate the food web pathways supporting the trophic structure and carbon export in this unique ecosystem, we used Markov Chain Monte Carlo techniques to assimilate data from four independent realizations of δ15N and planktonic rate measurements from the CRD into steady state, multicompartment ecosystem box models (linear inverse models). Model results present well-constrained snapshots of ecosystem nitrogen and stable isotope fluxes. New production is supported by upwelled nitrate, not nitrogen fixation. Protistivory (rather than herbivory) was the most important feeding mode for mesozooplankton, which rely heavily on microzooplankton prey. Mesozooplankton play a central role in vertical nitrogen export, primarily through active transport of nitrogen consumed in the surface layer and excreted at depth, which comprised an average 36-46% of total export. Detritus or aggregate feeding is also an important mode of resource acquisition by mesozooplankton and regeneration of nutrients within the euphotic zone. As a consequence, the ratio of passively sinking particle export to phytoplankton production is very low in the CRD. Comparisons to similar models constrained with data from the nearby equatorial Pacific demonstrate that the dominant role of vertical migrators to the biological pump is a unique feature of the CRD. However, both regions show efficient nitrogen transfer from mesozooplankton to higher trophic levels (as expected for regions with large fish, cetacean, and seabird populations) despite the dominance of protists as major grazers of phytoplankton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 978  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)