Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Lee, C.M.; Starkweather, S.; Eicken, H.; Timmermans, M.-L.; Wilkinson, J.; Sandven, S.; Dukhovskoy, D.; Gerland, S.; Grebmeier, J.; Intrieri, J.M.; Kang, S.-H.; McCammon, M.; Nguyen, A.T.; Polyakov, I.; Rabe, B.; Sagen, H.; Seeyave, S.; Volkov, D.; Beszczynska-Möller, A.; Chafik, L.; Dzieciuch, M.; Goni, G.; Hamre, T.; King, A.L.; Olsen, A.; Raj, R.P.; Rossby, T.; Skagseth, Ø.; Søiland, H.; Sørensen, K. url  doi
openurl 
  Title A Framework for the Development, Design and Implementation of a Sustained Arctic Ocean Observing System Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1044  
Permanent link to this record
 

 
Author Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.-L.; Krishfield, R.; Bamber, J.L. url  doi
openurl 
  Title Arctic circulation regimes Type $loc['typeJournal Article']
  Year 2015 Publication Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences Abbreviated Journal Philos Trans A Math Phys Eng Sci  
  Volume 373 Issue 2052 Pages  
  Keywords arctic climate variability; circulation regimes; freshwater and heat content  
  Abstract Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.  
  Address School of Geographical Sciences, University of Bristol, Bristol, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X ISBN Medium  
  Area Expedition Conference  
  Funding PMID:26347536; PMCID:PMC4607701 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 109  
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Myers, P.G.; Platov, G.; Timmermans, M.-L.; Curry, B.; Proshutinsky, A.; Bamber, J.L.; Chassignet, E.; Hu, X.; Lee, C.M.; Somavilla, R. url  doi
openurl 
  Title Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 121 Issue 1 Pages 877-907  
  Keywords Greenland Ice Sheet melting; Greenland freshwater; thermohaline circulation; Nordic Seas; sub-Arctic seas; Baffin Bay; Labrador Sea  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 35  
Permanent link to this record
 

 
Author Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J. doi  openurl
  Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal J Geophys Res Oceans  
  Volume 124 Issue 12 Pages  
  Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling  
  Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.  
  Address Physical Oceanography Laboratory Ocean University of China, Qingdao China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1097  
Permanent link to this record
 

 
Author Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J. doi  openurl
  Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal J Geophys Res Oceans  
  Volume 124 Issue 12 Pages 9658-9689  
  Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling  
  Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.  
  Address Physical Oceanography Laboratory Ocean University of China, Qingdao China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)