Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Qian, C.; Fu, C.; Wu, Z.; Yan, Z. url  doi
openurl 
  Title On the secular change of spring onset at Stockholm Type $loc['typeJournal Article']
  Year 2009 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 36 Issue 12 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 389  
Permanent link to this record
 

 
Author (up) Qian, C.; Wu, Z.; Fu, C.; Wang, D. url  doi
openurl 
  Title On Changing El Nino: A View from Time-Varying Annual Cycle, Interannual Variability, and Mean State Type $loc['typeJournal Article']
  Year 2011 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 24 Issue 24 Pages 6486-6500  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 283  
Permanent link to this record
 

 
Author (up) Qian, C.; Wu, Z.; Fu, C.; Zhou, T. url  doi
openurl 
  Title On multi-timescale variability of temperature in China in modulated annual cycle reference frame Type $loc['typeJournal Article']
  Year 2010 Publication Advances in Atmospheric Sciences Abbreviated Journal Adv. Atmos. Sci.  
  Volume 27 Issue 5 Pages 1169-1182  
  Keywords modulated annual cycle; the Ensemble Empirical Mode Decomposition; climate anomaly; climate normal; variability of surface air temperature in China  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0256-1530 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 355  
Permanent link to this record
 

 
Author (up) Qian, C.; Yan, Z.; Wu, Z.; Fu, C.; Tu, K. url  doi
openurl 
  Title Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China Type $loc['typeJournal Article']
  Year 2011 Publication Advances in Atmospheric Sciences Abbreviated Journal Adv. Atmos. Sci.  
  Volume 28 Issue 2 Pages 297-309  
  Keywords climate extremes; EEMD; weather-intraseasonal fluctuations; modulated annual cycle; global warming  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0256-1530 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 310  
Permanent link to this record
 

 
Author (up) Sun, J.; Wu, Z. url  doi
openurl 
  Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume Issue 3-4 Pages 1383-1405  
  Keywords  
  Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 812 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 36 and 812 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 36 days. The zonal wavenumbers mostly fall within the band of 415, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1093  
Permanent link to this record
 

 
Author (up) Wdowinski, S.; Bray, R.; Kirtman, B.P.; Wu, Z. url  doi
openurl 
  Title Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida Type $loc['typeJournal Article']
  Year 2016 Publication Ocean & Coastal Management Abbreviated Journal Ocean & Coastal Management  
  Volume 126 Issue Pages 1-8  
  Keywords Sea level rise; Flooding hazard; Tide gauge record; EEMD; Southeast Florida  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0964-5691 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 56  
Permanent link to this record
 

 
Author (up) Wu, Z.; Chassignet, E.P.; Ji, F.; Huang, J. url  doi
openurl 
  Title Reply to 'Spatiotemporal patterns of warming' Type $loc['typeJournal Article']
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nature Climate change  
  Volume 4 Issue 10 Pages 846-848  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 151  
Permanent link to this record
 

 
Author (up) Wu, Z.; Feng, J.; Qiao, F.; Tan, Z.-M. url  doi
openurl 
  Title Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets Type $loc['typeJournal Article']
  Year 2016 Publication Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences Abbreviated Journal Philos Trans A Math Phys Eng Sci  
  Volume 374 Issue 2065 Pages 20150197  
  Keywords adaptive and local data analysis; data compression; empirical orthogonal function; fast algorithm; multidimensional ensemble empirical mode decomposition; principal component analysis  
  Abstract In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders.  
  Address School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X ISBN Medium  
  Area Expedition Conference  
  Funding PMID:26953173; PMCID:PMC4792406 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 57  
Permanent link to this record
 

 
Author (up) Wu, Z.; Huang, N.E. url  doi
openurl 
  Title Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method Type $loc['typeJournal Article']
  Year 2009 Publication Advances in Adaptive Data Analysis Abbreviated Journal Adv. Adapt. Data Anal.  
  Volume 01 Issue 01 Pages 1-41  
  Keywords Empirical Mode Decomposition (EMD); ensemble empirical mode decompositions; noise-assisted data analysis (NADA); Intrinsic Mode Function (IMF); shifting stoppage criteria; end effect reduction Read More: http://www.worldscientific.com/doi/abs/10.1142/S1793536909000047  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-5369 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 667  
Permanent link to this record
 

 
Author (up) Wu, Z.; Huang, N.E.; Chen, X. url  doi
openurl 
  Title The Multi-Dimensional Ensemble Empirical Mode Decomposition Method Type $loc['typeJournal Article']
  Year 2009 Publication Advances in Adaptive Data Analysis Abbreviated Journal Adv. Adapt. Data Anal.  
  Volume 01 Issue 03 Pages 339-372  
  Keywords Empirical mode decomposition (EMD); ensemble empirical mode decomposition (EEMD); minimal scale principle; pseudo multi-dimensional ensemble empirical mode decomposition; multi-dimensional ensemble empirical mode decomposition  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-5369 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 669  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)