|   | 
Details
   web
Records
Author Xu, X.; Rhines, P.B.; Chassignet, E.P.
Title On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean Type $loc['typeJournal Article']
Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 48 Issue 10 Pages 2233-2258
Keywords Atmosphere-ocean interaction; Boundary currents; Diapycnal mixing; Fronts; Thermocline circulation
Abstract Diapycnal water mass transformation is the essence behind the Atlantic meridional overturning circulation (AMOC) and the associated heat/freshwater transports. Existing studies have mostly focused on the transformation that is forced by surface buoyancy fluxes, and the role of interior mixing is much less known. This study maps the three-dimensional structure of the diapycnal transformation, both surface forced and mixing induced, using results of a high-resolution numerical model that have been shown to represent the large-scale structure of the AMOC and the North Atlantic subpolar/subtropical gyres well. The analyses show that 1) annual mean transformation takes place seamlessly from the subtropical to the subpolar North Atlantic following the surface buoyancy loss along the northward-flowing upper AMOC limb; 2) mixing, including wintertime convection and warm-season restratification by mesoscale eddies in the mixed layer and submixed layer diapycnal mixing, drives transformations of (i) Subtropical Mode Water in the southern part of the subtropical gyre and (ii) Labrador Sea Water in the Labrador Sea and on its southward path in the western Newfoundland Basin; and 3) patterns of diapycnal transformations toward lighter and denser water do not align zonally�the net three-dimensional transformation is significantly stronger than the zonally integrated, two-dimensional AMOC streamfunction (50% in the southern subtropical North Atlantic and 60% in the western subpolar North Atlantic).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 951
Permanent link to this record
 

 
Author Chassignet, E.P.; Xu, X.
Title Impact of Horizontal Resolution (1/12° to 1/50°) on Gulf Stream Separation, Penetration, and Variability Type $loc['typeJournal Article']
Year 2017 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 47 Issue 8 Pages 1999-2021
Keywords Ocean; Boundary currents; Eddies; Mesoscale processes; Ocean circulation; Ocean dynamics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 17
Permanent link to this record
 

 
Author Trossman, D.S.; Arbic, B.K.; Straub, D.N.; Richman, J.G.; Chassignet, E.P.; Wallcraft, A.J.; Xu, X.
Title The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models Type $loc['typeJournal Article']
Year 2017 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 47 Issue 8 Pages 1941-1959
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 230
Permanent link to this record
 

 
Author Xu, X.; Rhines, P.B.; Chassignet, E.P.; Schmitz Jr., W.J.
Title Spreading of Denmark Strait Overflow Water in the Western Subpolar North Atlantic: Insights from Eddy-Resolving Simulations with a Passive Tracer Type $loc['typeJournal Article']
Year 2015 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 45 Issue 12 Pages 2913-2932
Keywords Circulation/ Dynamics; Abyssal circulation; Boundary currents; Ocean circulation; Ocean dynamics; Potential vorticity; Topographic effects
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 116
Permanent link to this record
 

 
Author Xu, X.; Rhines, P.B.; Chassignet, E.P.
Title Temperature-Salinity Structure of the North Atlantic Circulation and Associated Heat and Freshwater Transports Type $loc['typeJournal Article']
Year 2016 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 29 Issue 21 Pages 7723-7742
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 58
Permanent link to this record
 

 
Author Maloney, E.D.; Gettelman, A.; Ming, Y.; Neelin, J.D.; Barrie, D.; Mariotti, A.; Chen, C.-C.; Coleman, D.R.B.; Kuo, Y.-H.; Singh, B.; Annamalai, H.; Berg, A.; Booth, J.F.; Camargo, S.J.; Dai, A.; Gonzalez, A.; Hafner, J.; Jiang, X.; Jing, X.; Kim, D.; Kumar, A.; Moon, Y.; Naud, C.M.; Sobel, A.H.; Suzuki, K.; Wang, F.; Wang, J.; Wing, A.A.; Xu, X.; Zhao, M.
Title Process-Oriented Evaluation of Climate and Weather Forecasting Models Type $loc['typeJournal Article']
Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume 100 Issue 9 Pages 1665-1686
Keywords
Abstract Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers' model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-0007 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1088
Permanent link to this record
 

 
Author Legg, S.; Briegleb, B.; Chang, Y.; Chassignet, E.P.; Danabasoglu, G.; Ezer, T.; Gordon, A.L.; Griffies, S.; Hallberg, R.; Jackson, L.; Large, W.; Özgökmen, T.M.; Peters, H.; Price, J.; Riemenschneider, U.; Wu, W.; Xu, X.; Yang, J.
Title Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team Type $loc['typeJournal Article']
Year 2009 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume 90 Issue 5 Pages 657-670
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-0007 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 683
Permanent link to this record
 

 
Author Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 123 Issue 8 Pages 5808-5823
Keywords Iceland; Scotland overflow water; Charlie; Gibbs fracture zone; variability; volume transport; eddying simulation
Abstract Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 952
Permanent link to this record
 

 
Author Xu, X.; Schmitz Jr., W.J.; Hurlburt, H.E.; Hogan, P.J.; Chassignet, E.P.
Title Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations Type $loc['typeJournal Article']
Year 2010 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 115 Issue C12 Pages
Keywords transport; overflow water; Nordic Seas; North Atlantic Deep Water; Irminger Sea; Reykjanes Ridge
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 367
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P.; Price, J.F.; Özgökmen, T.M.; Peters, H.
Title A regional modeling study of the entraining Mediterranean outflow Type $loc['typeJournal Article']
Year 2007 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 112 Issue C12 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 420
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)