Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ahern, K.; Bourassa, M.A.; Hart, R.E.; Zhang, J.A.; Rogers, R.F. url  doi
openurl 
  Title Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer During Intensity Change Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume Issue Pages  
  Keywords  
  Abstract The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency &#8805; 20 kt (24 h)&#8722;1], weakening [WE; intensity tendency < &#8722;10 kt (24 h)&#8722;1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3,091 dropsondes were composited for analysis below 2.5 km elevation—1,086 during IN, 1,042 during WE, and 963 during SS. In non-intensifying hurricanes, the lowlevel tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I) at those radii for non-intensifying hurricanes. Differences in tangential wind structure (and I) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Non-intensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (&#952;e) and conditional stability are highest inside the RMW of non-intensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer &#952;e is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1031  
Permanent link to this record
 

 
Author (up) Domingues, R.; Kuwano-Yoshida, A.; Chardon-Maldonado, P.; Todd, R.E.; Halliwell, G.; Kim, H.-S.; Lin, I.-I.; Sato, K.; Narazaki, T.; Shay, L.K.; Miles, T.; Glenn, S.; Zhang, J.A.; Jayne, S.R.; Centurioni, L.; Le Hénaff, M.; Foltz, G.R.; Bringas, F.; Ali, M.M.; DiMarco, S.F.; Hosoda, S.; Fukuoka, T.; LaCour, B.; Mehra, A.; Sanabia, E.R.; Gyakum, J.R.; Dong, J.; Knaff, J.A.; Goni, G. url  doi
openurl 
  Title Ocean Observations in Support of Studies and Forecasts of Tropical and Extratropical Cyclones Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 446  
  Keywords  
  Abstract Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1043  
Permanent link to this record
 

 
Author (up) Xue, W.; Xin, X.; Zhang, J.; Zhang, W.; Wu, H.; Huang, Z.; Zhang, T.; Li, H.; Ding, N.; Huang H. url  doi
openurl 
  Title Development and Testing of a Multi-model Ensemble Coupling Framework Type $loc['typeBook Chapter']
  Year 2016 Publication Development and Evaluation of High Resolution Climate System Models Abbreviated Journal  
  Volume Issue Pages 163-208  
  Keywords Climate system model; Ensemble coupling platform; Atmospheric noise; Process layout  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 91  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)