|   | 
Details
   web
Records
Author (up) Chen, X.; Zhang, Y.; Zhang, M.; Feng, Y.; Wu, Z.; Qiao, F.; Huang, N.E.
Title Intercomparison between observed and simulated variability in global ocean heat content using empirical mode decomposition, part I: modulated annual cycle Type $loc['typeJournal Article']
Year 2013 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 41 Issue 11-12 Pages 2797-2815
Keywords Ocean heat content; Modulated annual cycle; Empirical mode decomposition; Instantaneous frequency; Instantaneous amplitude; CMIP3
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 209
Permanent link to this record
 

 
Author (up) Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F.
Title Data concerning statistical relation between obliquity and Dansgaard-Oeschger events Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal Data Brief
Volume 23 Issue Pages
Keywords Dansgaard-Oeschger events; Obliquity; Surrogate data; Time-varying Shannon entropy
Abstract Data presented are related to the research article entitled “Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity” (J. Deng et al., 2018). The datasets in Deng et al. (2018) are analyzed on the foundation of ensemble empirical mode decomposition (EEMD) (Z.H. Wu and N.E. Huang, 2009), and reveal more occurrences of Dansgaard-Oeschger (DO) events in the decreasing phase of obliquity. Here, we report the number of significant high Shannon entropy (SE) (C.E. Shannon and W. Weaver, 1949) of 95% significance level of DO events in the increasing and decreasing phases of obliquity, respectively. First, the proxy time series are filtered by EEMD to obtain DO events. Then, the time-varying SE of DO modes are calculated on the basis of principle of histogram. The 95% significance level is evaluated through surrogate data (T. Schreiber and A. Schmitz, 1996). Finally, a comparison between the numbers of SE values that are larger than 95% significance level in the increasing and decreasing phases of obliquity, respectively, is reported.
Address Key Laboratory of Marine Sciences and Numerical Modelling, Ministry of Natural Resources, Qingdao 266061, PR China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-3409 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('1372394'); strtoupper('P').strtolower('MC6660458') Approved $loc['no']
Call Number COAPS @ user @ Serial 1068
Permanent link to this record
 

 
Author (up) Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F.
Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews
Volume 192 Issue Pages 282-299
Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE
Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0277-3791 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 971
Permanent link to this record
 

 
Author (up) Zhang, M.; Wu, Z.; Qiao, F.
Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 31 Issue 20 Pages 8541-8555
Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC
Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 950
Permanent link to this record
 

 
Author (up) Zhang, M.; Zhang, Y.; Shu, Q.; Zhao, C.; Wang, G.; Wu, Z.; Qiao, F.
Title Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean Type $loc['typeJournal Article']
Year 2018 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 612 Issue Pages 1141-1148
Keywords Chlorophyll a; Dipole pattern; Multidimensional ensemble empirical mode decomposition; Propagation; Spatiotemporal evolution; The variable trend
Abstract Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored.
Address First Institute of Oceanography, State Oceanic Administration, Qingdao, China; Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Data Analysis and Applications, State Oceanic Administration, Qingdao, China. Electronic address: qiaofl@fio.org.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Funding PMID:28892858 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 363
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)