|   | 
Details
   web
Records
Author (up) Liu, Q.; Tan, Z-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z.
Title Changing rapid weather variability increases influenza epidemic risk in a warming climate Type $loc['typeJournal Article']
Year 2020 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters
Volume Issue Pages
Keywords
Abstract The continuing change of the Earth's climate is believed to affect the influenza viral activity and transmission in the coming decades. However, a consensus of the severity of the risk of influenza epidemic in a warming climate has not been reached. It was previously reported that the warmer winter can reduce influenza epidemic-caused mortality, but this relation cannot explain the deadly influenza epidemic in many countries over northern mid-latitudes in the winter of 2017-2018, one of the warmest winters in recent decades. Here we reveal that the widely spread 2017-2018 influenza epidemic can be attributed to the abnormally strong rapid weather variability. We demonstrate, from historical data, that the large rapid weather variability in autumn can precondition the deadly influenza epidemic in the subsequent months in highly populated northern mid-latitudes; and the influenza epidemic season of 2017-2018 was a typical case. We further show that climate model projections reach a consensus that the rapid weather variability in autumn will continue to strengthen in some regions of northern mid-latitudes in a warming climate, implying that the risk of influenza epidemic may increase 20% to 50% in some highly populated regions in later 21st century.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1070
Permanent link to this record
 

 
Author (up) Liu, Y.; Tan, Z.-M.; Wu, Z.
Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.
Volume 76 Issue 7 Pages 2083-2101
Keywords Convection; Diabatic heating; Moisture; moisture budget
Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4928 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1065
Permanent link to this record
 

 
Author (up) Magar, V.; Godínez, V.M.; Gross, M.S.; López-Mariscal, M.; Bermúdez-Romero, A.; Candela, J.; and Zamudio, L.
Title In-stream Energy by Tidal and Wind-driven Currents: An Analysis for the Gulf of California Type $loc['typeJournal Article']
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1101
Permanent link to this record
 

 
Author (up) Maloney, E.D.; Gettelman, A.; Ming, Y.; Neelin, J.D.; Barrie, D.; Mariotti, A.; Chen, C.-C.; Coleman, D.R.B.; Kuo, Y.-H.; Singh, B.; Annamalai, H.; Berg, A.; Booth, J.F.; Camargo, S.J.; Dai, A.; Gonzalez, A.; Hafner, J.; Jiang, X.; Jing, X.; Kim, D.; Kumar, A.; Moon, Y.; Naud, C.M.; Sobel, A.H.; Suzuki, K.; Wang, F.; Wang, J.; Wing, A.A.; Xu, X.; Zhao, M.
Title Process-Oriented Evaluation of Climate and Weather Forecasting Models Type $loc['typeJournal Article']
Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume 100 Issue 9 Pages 1665-1686
Keywords
Abstract Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers' model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-0007 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1088
Permanent link to this record
 

 
Author (up) Misra, V.; Bhardwaj, A.
Title The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures Type $loc['typeJournal Article']
Year 2020 Publication Atmospheric Science Letters Abbreviated Journal Atmos Sci Lett
Volume 124 Issue 12 Pages 9658-9689
Keywords
Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1100
Permanent link to this record
 

 
Author (up) Misra, V.; Bhardwaj, A.
Title Understanding the seasonal variations of Peninsular Florida Type $loc['typeJournal Article']
Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume 54 Issue 3-4 Pages 1873-1885
Keywords
Abstract This study accounts for varying lengths of the seasons, which turns out to be an important consideration of climate variability over Peninsular Florida (PF). We introduce an objective definition for the onset and demise of the winter season over relatively homogenous regions within PF: North Florida (NF), Central Florida (CF), Southeast Florida (SeF), and Southwest Florida (SwF). We first define the summer season based on precipitation, and follow this by defining the winter season using surface temperature analysis. As a consequence, of these definitions of the summer and the winter seasons, the lengths of the transition seasons of spring and fall also vary from year to year. The onset date variations have a robust relationship with the corresponding seasonal length anomalies across PF for all seasons. Furthermore, with some exceptions, the onset date variations are associated with corresponding seasonal rainfall and surface temperature anomalies, which makes monitoring the onset date of the seasons a potentially useful predictor of the following evolution of the season. In many of these instances the demise date variations of the season also have a bearing on the preceding seasonal length and seasonal rainfall anomalies. However, we find that variations of the onset and the demise dates are independent of each other across PF and in all seasons. We also find that the iconic ENSO teleconnection over PF is exclusive to the seasonal rainfall anomalies and it does not affect the variations in the length of the winter season. Given these findings, we strongly suggest monitoring and predicting the variations in the lengths of the seasons over PF as it is not only an important metric of climate variability but also beneficial to reduce a variety of risks of impact of anomalous seasonal climate variations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1098
Permanent link to this record
 

 
Author (up) Misra, V.; Bhardwaj, A.
Title Defining the Northeast Monsoon of India Type $loc['typeJournal Article']
Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.
Volume 147 Issue 3 Pages 791-807
Keywords Indian Summer Monsoon, intraseasonal,Climate models, variability, NEM, rainfall
Abstract This study introduces an objective definition for onset and demise of the Northeast Indian Monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850hPa winds, surface wind stress, surface ocean currents, and upper ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño�Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-0644 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 999
Permanent link to this record
 

 
Author (up) Misra, V.; Mishra, A.; Bhardwaj, A.
Title A coupled ocean-atmosphere downscaled climate projection for the peninsular Florida region Type $loc['typeJournal Article']
Year 2019 Publication Journal of Marine Systems Abbreviated Journal Journal of Marine Systems
Volume 194 Issue Pages 25-40
Keywords Climate projection; Peninsular Florida; bathymetry; climate simulation; future
Abstract A downscaled projection over the Peninsular Florida (PF) region is conducted with a Regional Climate Model (RCM) at 10 km grid spacing that incorporates interactive coupling between the atmosphere and ocean components of the climate system. This is first such application of a coupled ocean-atmosphere model for climate projection over the PF region. The RCM is shown to display reasonable fidelity in simulating the mean current climate and exhibits higher variability both in the ocean and in the atmosphere than the large-scale global model (Community Climate System Model version 4 [CCSM4]), which is used to drive the RCM. There are several features of the regional climate that RCM displays as an improvement over CCSM4: upper ocean thermal stratification, surface eddy kinetic energy of the ocean, volume flux through the Yucatan Channel, and terrestrial rainfall over PF. The projected mean hydroclimatic change over the period 2041�2060 relative to 1986�2005 over PF shows significant difference between RCM and CCSM4, with the RCM becoming significantly drier and CCSM4 moderately wetter. Furthermore, over the ocean surface, especially over the West Florida Shelf (WFS), RCM displays a wetter and a warmer surface climate compared to the CCSM4 simulation.

Our analysis of the model output indicates that improved resolution of ocean bathymetry in the RCM plays a significant role in the response of the projected changes in surface heat flux, clouds, upper ocean circulations and upper ocean stratification, which manifests with some of the largest differences from the CCSM4 projections, especially over the shallower parts of the ocean around PF. This contrast is most apparent between WFS and PF in the RCM simulation, which suggests that a future warm climate would likely produce more rain over WFS at the expense of corresponding reduction over PF, contrary to the absence of any such gradient in the CCSM4 simulation. Furthermore, in the RCM simulation, the warming of the sub-surface ocean in the future climate is owed to the combined influence of excess atmospheric heat flux directed towards the ocean from the atmosphere and the advective heat flux convergence with the relative slowing of the Loop Current in the future climate. The study demonstrates that such RCMs with coupled ocean-atmosphere interactions are necessary to downscale the global climate models to project the surface hydro-climate over regions like PF that have mesoscale features in the ocean, which can influence the terrestrial climate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-7963 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1003
Permanent link to this record
 

 
Author (up) Morey, S. L.; Wienders, N.; Dukhovskoy, D. S.; Bourassa, M. A.
Title Impact of Stokes Drift on Measurements of Surface Currents from Drifters and HF Radar Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 3307 Boundary layer processes, ATMOSPHERIC PROCESSESDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICALDE: 4560 Surface waves and tides, OCEANOGRAPHY: PHYSICALDE: 4572 Upper ocean and mixed layer processes, OCEANOGRAPHY: PHYSICAL
Abstract Concurrent measurements by surface drifters of different configurations and HF radar reveal substantial differences in estimates of the near-surface seawater velocity. On average, speeds of small ultra-thin (5 cm) drifters are significantly greater than co-located drifters with a traditional shallow drogue design, while velocity measurements from the drogued drifters closely match HF radar velocity estimates. Analysis of directional wave spectra measurements from a nearby buoy reveals that Stokes drift accounts for much of the difference between the velocity measurements from the drogued drifters and the ultra-thin drifters, except during times of wave breaking. Under wave breaking conditions, the difference between the ultra-thin drifter velocity and the drogued drifter velocity is much less than the computed Stokes drift. The results suggest that surface currents measured by more common approaches or simulated in models may underrepresent the velocity at the very surface of the ocean that is important for determining momentum and enthalpy fluxes between the ocean and atmosphere and for estimating transport of material at the ocean surface. However, simply adding an estimate of Stokes drift may also not be an appropriate method for estimating the true surface velocity from models or measurements from drogued drifters or HF radar under all sea conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1008
Permanent link to this record
 

 
Author (up) Morrison, T.; Dukhovskoy, D. S.; McClean, J.; Gille, S. T.; Chassignet, E.
Title Causes of the anomalous heat flux onto the Greenland continental shelf Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 0726 Ice sheets, CRYOSPHEREDE: 4207 Arctic and Antarctic oceanography, OCEANOGRAPHY: GENERALDE: 4215 Climate and interannual variability, OCEANOGRAPHY: GENERALDE: 4255 Numerical modeling, OCEANOGRAPHY: GENERAL
Abstract On the continental shelf around Greenland, warm-salty Atlantic water at depth fills the deep narrow fjords where Greenland's tidewater glaciers terminate. Changes in the quantity or properties of this water mass starting in the mid 1990s is thought to be largely responsible for increased ocean-driven melting of the Greenland Ice Sheet. Using high-resolution (nominal 0.1-degree) ocean circulation models we cannot accurately resolve small-scale processes on the shelf or within fjords. However, we can assess changes in the flux of heat via Atlantic water onto the continental shelf. To understand the causes of the anomalous heat that has reached the shelf we examine heat content of subtropical gyre water and shifts in the North Atlantic and Atlantic Multidecadal Oscillations.

We compare changes in heat transport in two eddy permitting simulations: a global 0.1 degree (5-7km around Greenland) resolution coupled hindcast (1970-2009) simulation of the Parallel Ocean Program (POP) and a regional 0.08 degree (3-5km around Greenland) resolution coupled HYbrid Coordinate Ocean Model (HYCOM) hindcast (1993-2016) simulation. Both models are coupled to the Los Alamos National Laboratory Community Ice CodE version 4 and forced by atmospheric reanalysis fluxes. In both models we look for processes that could explain the increase in heat; processes that are present in both are likely to be robust causes of warming.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1009
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2020 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)