|   | 
Details
   web
Records
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M.
Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 76-97
Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth
Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1001
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J.
Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 98-113
Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas
Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1036
Permanent link to this record
 

 
Author Guerra, L.A.A.; Paiva, A.M.; Chassignet, E.P.
Title On the translation of Agulhas rings to the western South Atlantic Ocean Type $loc['typeJournal Article']
Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers
Volume 139 Issue Pages 104-113
Keywords
Abstract The shedding of Agulhas rings is the primary process connecting the Indian and Atlantic oceans. The rings transport warm and salty waters that feed the surface limb of the Atlantic Meridional Overturning Circulation. Early studies suggest that Agulhas rings decay and diffuse their contents within the South Atlantic subtropical gyre. In this paper, we update the ring census using an automated algorithm to detect and track eddies over more than 23 years of satellite altimetry data (1993-2016) and calculate their main characteristics. While 140 rings spawned from the Agulhas Retroflection, their following splitting and merging resulted in 74 long-lived rings that crossed the Walvis Ridge and translated towards the west. Eventually, three rings reached the western boundary. For one of them, we use in situ measurements to document its interaction with the Brazil Current and two cyclonic eddies, which resulted in a current velocity increase by three times. Although already hypothesized, this interaction had not been demonstrated with in situ evidence until now.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0637 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 994
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A.
Title A coupled ocean-atmosphere downscaled climate projection for the peninsular Florida region Type $loc['typeJournal Article']
Year 2019 Publication Journal of Marine Systems Abbreviated Journal Journal of Marine Systems
Volume 194 Issue Pages 25-40
Keywords Climate projection; Peninsular Florida; bathymetry; climate simulation; future
Abstract A downscaled projection over the Peninsular Florida (PF) region is conducted with a Regional Climate Model (RCM) at 10 km grid spacing that incorporates interactive coupling between the atmosphere and ocean components of the climate system. This is first such application of a coupled ocean-atmosphere model for climate projection over the PF region. The RCM is shown to display reasonable fidelity in simulating the mean current climate and exhibits higher variability both in the ocean and in the atmosphere than the large-scale global model (Community Climate System Model version 4 [CCSM4]), which is used to drive the RCM. There are several features of the regional climate that RCM displays as an improvement over CCSM4: upper ocean thermal stratification, surface eddy kinetic energy of the ocean, volume flux through the Yucatan Channel, and terrestrial rainfall over PF. The projected mean hydroclimatic change over the period 2041�2060 relative to 1986�2005 over PF shows significant difference between RCM and CCSM4, with the RCM becoming significantly drier and CCSM4 moderately wetter. Furthermore, over the ocean surface, especially over the West Florida Shelf (WFS), RCM displays a wetter and a warmer surface climate compared to the CCSM4 simulation.

Our analysis of the model output indicates that improved resolution of ocean bathymetry in the RCM plays a significant role in the response of the projected changes in surface heat flux, clouds, upper ocean circulations and upper ocean stratification, which manifests with some of the largest differences from the CCSM4 projections, especially over the shallower parts of the ocean around PF. This contrast is most apparent between WFS and PF in the RCM simulation, which suggests that a future warm climate would likely produce more rain over WFS at the expense of corresponding reduction over PF, contrary to the absence of any such gradient in the CCSM4 simulation. Furthermore, in the RCM simulation, the warming of the sub-surface ocean in the future climate is owed to the combined influence of excess atmospheric heat flux directed towards the ocean from the atmosphere and the advective heat flux convergence with the relative slowing of the Loop Current in the future climate. The study demonstrates that such RCMs with coupled ocean-atmosphere interactions are necessary to downscale the global climate models to project the surface hydro-climate over regions like PF that have mesoscale features in the ocean, which can influence the terrestrial climate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-7963 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1003
Permanent link to this record
 

 
Author Stukel, M.R.; Kelly, T.B.
Title The carbon: (234) Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
Year 2019 Publication Marine Chemistry Abbreviated Journal Marine Chemistry
Volume 212 Issue Pages 1-15
Keywords POC concentration; sinking particles.; depth and relationship with water; phytoplankton
Abstract Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon: thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4203 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1002
Permanent link to this record
 

 
Author Kumar, V.; Jana, S.; Bhardwaj, A.; Deepa, R.; Sahu, S.K.; Pradhan, P.K.; Sirdas, S.A.
Title Greenhouse Gas Emission, Rainfall and Crop Production Over North-Western India Type $loc['typeJournal Article']
Year 2018 Publication The Open Ecology Journal Abbreviated Journal
Volume 11 Issue 1 Pages 47-61
Keywords
Abstract Background: This study is based on datasets acquired from multi sources e.g. rain-gauges, satellite, reanalysis and coupled model for the region of Northwestern India. The influence of rainfall on crop production is obvious and direct. With the climate change and global warming, greenhouse gases are also showing an adverse impact on crop production. Greenhouse gases (e.g. CO2, NO2 and CH4) have shown an increasing trend over Northwestern Indian region. In recent years, rainfall has also shown an increasing trend over Northwestern India, while the production of rice and maize are reducing over the region. From eight selected sites, over Northwestern India, where rice and maize productions have reduced by 40%, with an increase in CO2, NO2 and CH4 gas emission by 5% from 1998 to 2011. Results: The correlation from one year to another between rainfall, gas emission and crop production was not very robust throughout the study period, but seemed to be stronger for some years than others. Conclusion: Such trends and crop yield are attributed to rainfall, greenhouse gas emissions and to the climate variability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-2130 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1024
Permanent link to this record
 

 
Author Krishnamurti, T. N.; Karmakar, Nirupam; Misra, Vasubandhu; Nag, Bappaditya; Sahu, Dipak; Dubey, Sarvesh; Haddad, Ziad
Title Association between upper level diffluence in the Tropical Easterly Jet and the formation of the strongest Atlantic hurricanes in recent years Type $loc['typeJournal Article']
Year 2018 Publication Proceedings of SPIE Abbreviated Journal SPIE
Volume 10782 Issue Pages 10
Keywords
Abstract In this paper we report the evidence of the potential role of diffluence in the 200hPa wind field off the coast of West Africa in the formation of a significant number of Category 4 and Category 5 hurricanes in the recent decade. It is shown that more than 80% cases of hurricanes at Category 4 and above is preceded by upper level diffluence in the Tropical Easterly Jet (TEJ) by 0{5 days. This TEJ is the outflow from the southern flank of the Tibetan anticyclone from the Asian monsoon region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 1000
Permanent link to this record
 

 
Author Xiaobiao Xu, Eric Chassignet
Title Subpolar-Subtropical Connectivity of the North Atlantic Circulation Type $loc['typeMiscellaneous']
Year 2019 Publication PHYSICAL OCEANOGRAPHY Abbreviated Journal
Volume Issue Pages
Keywords Warming, hydrographic, subtropical gyres, sub-basins, passive tracers
Abstract The ocean, through its large capacity to store heat, plays a critical role in Earth's climate and climate variability. Warming of the world's oceans since 1955 accounts for approximately 93% of the warming of the Earth system. However, this warming is neither spatially uniform nor temporally constant. Superimposed on the global long-term trend is climate variability on inter-annual to inter-decadal time scales and regional to basin scales. Satellite altimeters and hydrographic observations show that the North Atlantic, including the sub-polar region, has rapidly become warmer and saltier since the early 1990s. An emerging picture is that the most recent 20 years or so of warming in the North Atlantic represents, in part, a transition of the Atlantic multi-decadal variability pattern from a cold to a warm phase. These decadal climate transitions involve changes both laterally in the sub-tropical and sub-polar gyres of the North Atlantic and vertically in the Atlantic Meridional Overturning Circulation (AMOC), a key component of the global heat and freshwater circulation system. This study of the North Atlantic circulation concentrates on a transition region around the Grand Banks of Newfoundland, where the effects of boundary currents and jets, recirculations, and mesoscale eddies (length scales typically less than 100 km) are dominant. Strong interactions occur in this transition region, laterally between the subpolar and subtropical gyres and vertically between the cold and warm limbs of the Atlantic Meridional Circulation (AMOC). There is evidence that this relatively compact region plays a key role in altering and even modulating the AMOC over a much larger scale and thus is important for the long-term, decadal variability of the Atlantic Ocean. Yet, despite many observational field programs, the dynamics and impacts of this region are not well understood. The project will contribute to understanding the variability of the AMOC by addressing the connectivity of the sub-polar and the sub-tropical gyres. The results of this model-data synthesis will be of particular significance to coupled climate models, which are central to understanding and predicting global climate change. The educational/outreach components of this project will be focused on cultivating scientific literacy with regards to ocean climate research in K-12 schools, at the university level, and in the local community through a variety of online resources/interactive tools for educators, the Florida State University Young Scholars program for high school students, and the “Scientists in the Schools” program. Finally, the requested funding will support a junior faculty member and a graduate student who will be trained in ocean modeling, data analysis and interpretation.

Through ongoing major observation programs in the sub-polar and sub-tropical North Atlantic Ocean, oceanographers are making great strides toward a better understanding of the structure and variability of the AMOC within these sub-basins. The work proposed here complements these observations by focusing on key questions pertaining to what controls the circulation in between and how much the sub-polar to sub-tropical connectivity modulates the larger scale AMOC. This project aims to elucidate the physical dynamics that controls circulation in the transition region, especially the relative importance of the eddies and the deep western boundary current, and document the role and impact of the transition region on the larger scale circulation, especially the variability of the AMOC and water properties in the sub-polar and sub-tropical North Atlantic from inter-annual to decadal and longer time scales. The interaction of eddies and time mean circulations represents one of the greatest challenges to prediction of global climate variability, and it can be studied with the fine-grid resolution model included in this project. These objectives will be met by performing a detailed model-data synthesis study, combining numerical results from a suite of high-resolution Atlantic simulations using the HYbrid Coordinate Ocean Model (HYCOM) and existing observations (satellite altimetry, drifters/floats, hydrography, tracers, and mooring arrays). The three-dimensional Atlantic circulation will be quantified by performing analysis of water mass transport and transformation, passive tracers, and potential vorticity and momentum fluxes. It has been demonstrated that the eddy-resolving HYCOM represents the basic circulation features in the transition region and larger scale North Atlantic Ocean, including both time mean structure and temporal variability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1018
Permanent link to this record
 

 
Author Zhao, X.; Zhou, C.; Xu, X.; Ye, R.; Tian, J.; Zhao, W.
Title Deep Circulation in the South China Sea Simulated in a Regional Model Type $loc['typeJournal Article']
Year 2019 Publication Ocean Sci. Discuss Abbreviated Journal Ocean Sci. Discuss
Volume Issue Pages
Keywords Sea Marine, Oceanography/CIMST, PacificOcean, continuous current-meter, deep circulation, deep western boundary
Abstract The South China Sea (SCS) is the largest marginal sea in the northwest Pacific Ocean. In this study, deep circulation in the SCS is investigated using results from eddy-resolving, regional simulations using the Hybrid Coordinate Ocean Model (HYCOM) verified by continuous current-meter observations. Analysis of these results provides a detailed spatial structure and temporal variability of the deep circulation in the SCS. The major features of the SCS deep circulation are a basin-scale cyclonic gyre and a concentrated deep western boundary current (DWBC). Transport of the DWBC is ∼ 2 Sv at 16.5° N with a width of ∼53 km. Flowing southwestward, the narrow DWBC becomes weaker with a wider range. The model results reveal the existence of 80- to 120-day oscillation in the deep northeastern circulation and the DWBC, which are also the areas with elevated eddy kinetic energy. This intraseasonal oscillation propagates northwestward with a velocity amplitude of ∼ 1.0 to 1.5 cm s-1. The distribution of mixing parameters in the deep SCS plays a role in both spatial structure and volume transport of the deep circulation. Compared with the northern shelf of the SCS with the Luzon Strait, deep circulation in the SCS is more sensitive to the large vertical mixing parameters of the Zhongsha Island Chain area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1013
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V.
Title Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products Type $loc['typeJournal Article']
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 9 Pages 1080
Keywords Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological sub-divisions
Abstract We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. View Full-Text
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1026
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2019 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)