|   | 
Details
   web
Records
Author Ahern, Kyle K.
Title Hurricane Boundary Layer Structure during Intensity Change: An Observational and Numerical Analysis Type $loc['typeManuscript']
Year 2019 Publication Florida State University College of Arts and Sciences Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1103
Permanent link to this record
 

 
Author Jacob, J. C.; Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P.
Title OceanWorks: Enabling Interactive Oceanographic Analysis in the Cloud with Multivariate Data Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 910 Data assimilation, integration and fusion, INFORMATICSDE: 1916 Data and information discovery, INFORMATICSDE: 1926 Geospatial, INFORMATICSDE: 1942 Machine learning, INFORMATICS
Abstract NASA's Advanced Information System Technology (AIST) Program sponsors the OceanWorks project to establish an integrated data analytics center at the Physical Oceanography Distributed Active Archive Center (PO.DAAC). OceanWorks provides a series of interoperable capabilities that are essential for cloud-scale oceanographic research. These include big data analytics, data search with subsecond response, intelligent ranking of search results, subsetting based on data quality metrics, and rapid spatiotemporal matchup of satellite measurements with distributed in situ data. The software behind OceanWorks is being developed as an open source project in the Apache Incubator Science Data Analytics Platform (SDAP – http://sdap.apache.org). In this presentation we describe how OceanWorks enables efficient, scalable, interactive and interdisciplinary oceanographic analysis with multivariate data.

Interactivity is enabled by a number of SDAP features. First, SDAP provides Representational State Transfer (REST) interfaces to a number of built-in cloud analytics to compute time series, time-averaged maps, correlation maps, climatological maps, Hovmöller maps, and more. To access these, users simply navigate to a properly constructed parameterized URL in their web browser or issue web services calls in a variety of programming languages or in a Jupyter notebook. Alternatively, Python clients can make function calls via the NEXUS Command Line Interface (CLI). Authenticated users can even inject their own custom code via REST calls or the CLI.

To enable interdisciplinary science, OceanWorks provides access to a rich collection of multivariate satellite and in situ measurements of the oceans (e.g., sea surface temperature, height and salinity, chlorophyll and circulation) and other Earth science data (e.g., aerosol optical depth and wind speed), coupled with on-demand processing capabilities close to the data. We partition the data across space or time into tiles and store them into cloud-aware databases that are collocated with the computations. We will provide examples of scientific studies directly enabled by OceanWorks' multivariate data and cloud analytics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1005
Permanent link to this record
 

 
Author Zheng, Y.; Bourassa, M. A.; Dukhovskoy, D. S.
Title Upper-Ocean Processes Controlling the Sea Surface Temperature in the Western Gulf of Mexico Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 4299 General or miscellaneous, OCEANOGRAPHY: GENERAL
Abstract This study examines the upper-ocean processes controlling the mixed layer temperature in the western Gulf of Mexico (GOM) through estimating the contributing terms in the heat equation, with an emphasis on eddies' role. The major heat contributing terms for the upper GOM were estimated using two ocean reanalysis datasets: an eddy-resolving HYbrid Coordinate Ocean Model (HYCOM) and a Simple Ocean Data Assimilation (SODA). Analysis of net surface heat fluxes from four datasets reveals that the long-term mean net surface heat flux cools the northern GOM and warms the southern GOM. Two regions are focused for analysis: an eddy-rich region where LCEs are energetic, and the southwestern Gulf where eddy activity is relatively weak and the features of near surface temperature differ from the eddy-rich region. An eddy-rich region in the western GOM is defined based on the eddy kinetic energy derived from satellite sea surface heights. The long-term mean horizontal heat advection causes a weak warming over most of the eddy rich region, partly attributed to the flow-temperature configuration that the long-term and seasonally mean flow is nearly parallel to the corresponding mean isotherms. By contrast, the temporal mean vertical heat advection causes a strong warming in the eddy rich region, partly balancing the cooling caused by net surface heat flux. The temporal mean eddy heat flux convergence in the western GOM, whose positive and negative values are not small at some locations, appears heterogeneous in space, resulting in a small term for the western GOM when area averaged. The persistent warm water in the southwestern Gulf is primarily caused by the net warming from net surface heat flux rather than from eddies and heat advection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1007
Permanent link to this record
 

 
Author O'hara, S. H.; Arko, R. A.; Clark, D.; Chandler, C. L.; Elya, J. L.; Ferrini, V. L.; McLain, K.; Olson, C. J.; Sellers, C. J.; Smith, S. R.; Stocks, K. I.; Stolp, L.; Carbotte, S. M.
Title Rolling Deck to Repository (R2R) Program Data Services for the Oceanographic Research Community Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume American Geophysical Union, Fall Meeting 2018 Issue Pages
Keywords OCEANOGRAPHY: GENERAL
Abstract Research vessels supported by NSF are critical platforms contributing to academic oceanographic research in the US. The “underway” data sets obtained from the continuously operating geophysical, water column, and meteorological sensors aboard these vessels provide characterization of basic environmental conditions for the oceans and are of high scientific value for building global syntheses, climatologies, and historical time series of ocean properties (e.g the World Ocean Atlas, the GMRT bathymetric synthesis, ICOADS). The Rolling deck to Repository program (www.rvdata.us) provides a central shore-side data gateway that ensures the basic documentation, assessment and submission of all environmental data from ship operators to the NOAA long-term archives for these data. R2R provides a set of data services for the oceanographic research community, including: publishing an online, searchable and browsable master cruise catalog, supported by cruise and data set DOIs; organizing, archiving, and disseminating original underway data and documents; assessing data quality on select data types; creating select post-field data products; and supporting at-sea event logging. In this presentation we will discuss new developments in R2R data services and challenges associated with ship-based data management. A significant challenge is the dramatic increase in data volumes associated with new sensors (e.g. the EK80 Sonar systems) whereby individual cruise distributions can be several terabytes. Ship operators, R2R and NCEI must design a way to move and store these growing volumes. R2R is also working to make information more accessible and complete. A new website has been launched along with API web services that allow users to find and use data more easily. R2R is working to improve device metadata, including working to identify the time sources for all environmental sensors to support accurate comparison and merging of data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1020
Permanent link to this record
 

 
Author Morrison, T.; Dukhovskoy, D. S.; McClean, J.; Gille, S. T.; Chassignet, E.
Title Causes of the anomalous heat flux onto the Greenland continental shelf Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 0726 Ice sheets, CRYOSPHEREDE: 4207 Arctic and Antarctic oceanography, OCEANOGRAPHY: GENERALDE: 4215 Climate and interannual variability, OCEANOGRAPHY: GENERALDE: 4255 Numerical modeling, OCEANOGRAPHY: GENERAL
Abstract On the continental shelf around Greenland, warm-salty Atlantic water at depth fills the deep narrow fjords where Greenland's tidewater glaciers terminate. Changes in the quantity or properties of this water mass starting in the mid 1990s is thought to be largely responsible for increased ocean-driven melting of the Greenland Ice Sheet. Using high-resolution (nominal 0.1-degree) ocean circulation models we cannot accurately resolve small-scale processes on the shelf or within fjords. However, we can assess changes in the flux of heat via Atlantic water onto the continental shelf. To understand the causes of the anomalous heat that has reached the shelf we examine heat content of subtropical gyre water and shifts in the North Atlantic and Atlantic Multidecadal Oscillations.

We compare changes in heat transport in two eddy permitting simulations: a global 0.1 degree (5-7km around Greenland) resolution coupled hindcast (1970-2009) simulation of the Parallel Ocean Program (POP) and a regional 0.08 degree (3-5km around Greenland) resolution coupled HYbrid Coordinate Ocean Model (HYCOM) hindcast (1993-2016) simulation. Both models are coupled to the Los Alamos National Laboratory Community Ice CodE version 4 and forced by atmospheric reanalysis fluxes. In both models we look for processes that could explain the increase in heat; processes that are present in both are likely to be robust causes of warming.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1009
Permanent link to this record
 

 
Author Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P.
Title An information technology foundation for fostering interdisciplinary oceanographic research and analysis Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL
Abstract Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1004
Permanent link to this record
 

 
Author Morey, S. L.; Wienders, N.; Dukhovskoy, D. S.; Bourassa, M. A.
Title Impact of Stokes Drift on Measurements of Surface Currents from Drifters and HF Radar Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 3307 Boundary layer processes, ATMOSPHERIC PROCESSESDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICALDE: 4560 Surface waves and tides, OCEANOGRAPHY: PHYSICALDE: 4572 Upper ocean and mixed layer processes, OCEANOGRAPHY: PHYSICAL
Abstract Concurrent measurements by surface drifters of different configurations and HF radar reveal substantial differences in estimates of the near-surface seawater velocity. On average, speeds of small ultra-thin (5 cm) drifters are significantly greater than co-located drifters with a traditional shallow drogue design, while velocity measurements from the drogued drifters closely match HF radar velocity estimates. Analysis of directional wave spectra measurements from a nearby buoy reveals that Stokes drift accounts for much of the difference between the velocity measurements from the drogued drifters and the ultra-thin drifters, except during times of wave breaking. Under wave breaking conditions, the difference between the ultra-thin drifter velocity and the drogued drifter velocity is much less than the computed Stokes drift. The results suggest that surface currents measured by more common approaches or simulated in models may underrepresent the velocity at the very surface of the ocean that is important for determining momentum and enthalpy fluxes between the ocean and atmosphere and for estimating transport of material at the ocean surface. However, simply adding an estimate of Stokes drift may also not be an appropriate method for estimating the true surface velocity from models or measurements from drogued drifters or HF radar under all sea conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1008
Permanent link to this record
 

 
Author Stukel, M.R.; Barbeau, K.A.
Title Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump Type $loc['typeJournal Article']
Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 47 Issue 6 Pages e2020GL087351
Keywords
Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore-offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron-limitation. The biological carbon pump was enhanced in high nutrient and Fe-stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe-stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non-Redfieldian nutrient uptake by diatoms may lead to high PO:NO and Si(OH):NO ratios, following export of P- and Si-enriched organic matter. Increased export following Fe-stress may partially explain inverse relationships between net primary productivity and export efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1112
Permanent link to this record
 

 
Author Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; Griffies, S.M.; Hallberg, R.W.; Hanert, E.; Heimbach, P.; Hewitt, H.T.; Hill, C.N.; Komuro, Y.; Legg, S.; Le Sommer, J.; Masina, S.; Marsland, S.J.; Penny, S.G.; Qiao, F.; Ringler, T.D.; Treguier, A.M.; Tsujino, H.; Uotila, P.; Yeager, S.G.
Title Challenges and Prospects in Ocean Circulation Models Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages
Keywords Southern Ocean; Overturning Circulation: Regional sea level; submesoscale; ice shelves; turbulence
Abstract We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1011
Permanent link to this record
 

 
Author Armstrong, E.M.; Bourassa, M.A.; Cram, T.A.; DeBellis, M.; Elya, J.; Greguska III, F.R.; Huang, T.; Jacob, J.C.; Ji, Z.; Jiang, Y.; Li, Y.; Quach, N.; McGibbney, L.; Smith, S.; Tsontos, V.M.; Wilson, B.; Worley, S.J.; Yang, C.; Yam, E.
Title An Integrated Data Analytics Platform Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 354
Keywords
Abstract An Integrated Science Data Analytics Platform is an environment that enables the confluence of resources for scientific investigation. It harmonizes data, tools and computational resources to enable the research community to focus on the investigation rather than spending time on security, data preparation, management, etc. OceanWorks is a NASA technology integration project to establish a cloud-based Integrated Ocean Science Data Analytics Platform for big ocean science at NASA’s Physical Oceanography Distributed Active Archive Center (PO.DAAC) for big ocean science. It focuses on advancement and maturity by bringing together several NASA open-source, big data projects for parallel analytics, anomaly detection, in situ to satellite data matchup, quality-screened data subsetting, search relevancy, and data discovery. Our communities are relying on data available through distributed data centers to conduct their research. In typical investigations, scientists would (1) search for data, (2) evaluate the relevance of that data, (3) download it, and (4) then apply algorithms to identify trends, anomalies, or other attributes of the data. Such a workflow cannot scale if the research involves a massive amount of data or multi-variate measurements. With the upcoming NASA Surface Water and Ocean Topography (SWOT) mission expected to produce over 20PB of observational data during its 3-year nominal mission, the volume of data will challenge all existing Earth Science data archival, distribution and analysis paradigms. This paper discusses how OceanWorks enhances the analysis of physical ocean data where the computation is done on an elastic cloud platform next to the archive to deliver fast, web-accessible services for working with oceanographic measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1042
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)