Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Understanding the seasonal variations of Peninsular Florida Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1873-1885  
  Keywords  
  Abstract This study accounts for varying lengths of the seasons, which turns out to be an important consideration of climate variability over Peninsular Florida (PF). We introduce an objective definition for the onset and demise of the winter season over relatively homogenous regions within PF: North Florida (NF), Central Florida (CF), Southeast Florida (SeF), and Southwest Florida (SwF). We first define the summer season based on precipitation, and follow this by defining the winter season using surface temperature analysis. As a consequence, of these definitions of the summer and the winter seasons, the lengths of the transition seasons of spring and fall also vary from year to year. The onset date variations have a robust relationship with the corresponding seasonal length anomalies across PF for all seasons. Furthermore, with some exceptions, the onset date variations are associated with corresponding seasonal rainfall and surface temperature anomalies, which makes monitoring the onset date of the seasons a potentially useful predictor of the following evolution of the season. In many of these instances the demise date variations of the season also have a bearing on the preceding seasonal length and seasonal rainfall anomalies. However, we find that variations of the onset and the demise dates are independent of each other across PF and in all seasons. We also find that the iconic ENSO teleconnection over PF is exclusive to the seasonal rainfall anomalies and it does not affect the variations in the length of the winter season. Given these findings, we strongly suggest monitoring and predicting the variations in the lengths of the seasons over PF as it is not only an important metric of climate variability but also beneficial to reduce a variety of risks of impact of anomalous seasonal climate variations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1098  
Permanent link to this record
 

 
Author Sun, J.; Wu, Z. url  doi
openurl 
  Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume Issue 3-4 Pages 1383-1405  
  Keywords  
  Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 8–12 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 3–6 and 8–12 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 3–6 days. The zonal wavenumbers mostly fall within the band of 4–15, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1093  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 53 Issue 5-6 Pages 2931-2947  
  Keywords  
  Abstract A comparative analysis of two sets of downscaled simulations of the current climate and the future climate projections over Peninsular Florida (PF) and the West Florida Shelf (WFS) is presented to isolate the role of high-resolution air-sea coupling. In addition, the downscaled integrations are also compared with the much coarser, driving global model projection to examine the impact of grid resolution of the models. The WFS region is habitat for significant marine resources, which has both commercial and recreational value. Additionally, the hydroclimatic features of the WFS and PF contrast each other. For example, the seasonal cycle of surface evaporation in these two regions are opposite in phase to one another. In this study, we downscale the Community Climate System Model version 4 (CCSM4) simulations of the late twentieth century and the mid-twenty-first century (with reference concentration pathway 8.5 emission scenario) using an atmosphere only Regional Spectral Model (RSM) at 10 km grid resolution. In another set, we downscale the same set of CCSM4 simulations using the coupled RSM-Regional Ocean Model System (RSMROMS) at 10 km grid resolution. The comparison of the twentieth century simulations suggest significant changes to the SST simulation over WFS from RSMROMS relative to CCSM4, with the former reducing the systematic errors of the seasonal mean SST over all seasons except in the boreal summer season. It may be noted that owing to the coarse resolution of CCSM4, the comparatively shallow bathymetry of the WFS and the sharp coastline along PF is poorly defined, which is significantly rectified at 10 km grid spacing in RSMROMS. The seasonal hydroclimate over PF and the WFS in the twentieth century simulation show significant bias in all three models with CCSM4 showing the least for a majority of the seasons, except in the wet June-July-August (JJA) season. In the JJA season, the errors of the surface hydroclimate over PF is the least in RSMROMS. The systematic errors of surface precipitation and evaporation are more comparable between the simulations of CCSM4 and RSMROMS, while they differ the most in moisture flux convergence. However, there is considerable improvement in RSMROMS compared to RSM simulations in terms of the seasonal bias of the hydroclimate over WFS and PF in all seasons of the year. This suggests the potential rectification impact of air-sea coupling on dynamic downscaling of CCSM4 twentieth century simulations. In terms of the climate projection in the decades of 2041-2060, the RSMROMS simulation indicate significant drying of the wet season over PF compared to moderate drying in CCSM4 and insignificant changes in the RSM projection. This contrasting projection is also associated with projected warming of SSTs along the WFS in RSMROMS as opposed to warming patterns of SST that is more zonal and across the WFS in CCSM4.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1082  
Permanent link to this record
 

 
Author Liu, Y.; Tan, Z.-M.; Wu, Z. url  doi
openurl 
  Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
  Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.  
  Volume 76 Issue 7 Pages 2083-2101  
  Keywords Convection; Diabatic heating; Moisture; moisture budget  
  Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1065  
Permanent link to this record
 

 
Author Maloney, E.D.; Gettelman, A.; Ming, Y.; Neelin, J.D.; Barrie, D.; Mariotti, A.; Chen, C.-C.; Coleman, D.R.B.; Kuo, Y.-H.; Singh, B.; Annamalai, H.; Berg, A.; Booth, J.F.; Camargo, S.J.; Dai, A.; Gonzalez, A.; Hafner, J.; Jiang, X.; Jing, X.; Kim, D.; Kumar, A.; Moon, Y.; Naud, C.M.; Sobel, A.H.; Suzuki, K.; Wang, F.; Wang, J.; Wing, A.A.; Xu, X.; Zhao, M. url  doi
openurl 
  Title Process-Oriented Evaluation of Climate and Weather Forecasting Models Type $loc['typeJournal Article']
  Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 100 Issue 9 Pages 1665-1686  
  Keywords  
  Abstract Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers' model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1088  
Permanent link to this record
 

 
Author Yu, B.; Seed, A.; Pu, L.; Malone, T. url  doi
openurl 
  Title Integration of weather radar data into a raster GIS framework for improved flood estimation Type $loc['typeJournal Article']
  Year 2019 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.  
  Volume 6 Issue 1 Pages  
  Keywords  
  Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons.Our study reveals that accounting for the variations in the length of the sea-sons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-261X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1069  
Permanent link to this record
 

 
Author Neto, A.G.; Palter, J.; Bower, A.; Furey, H.; Xu. X. doi  openurl
  Title Labrador Sea Water transport across the Charlie-Gibbs Fracture Zone Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume Accepted Issue Pages  
  Keywords  
  Abstract Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993‐2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1108  
Permanent link to this record
 

 
Author Kelly, T.B.; Davison, P.C.; Goericke, R.; Landry, M.R.; Ohman, M.D.; Stukel, M,R. doi  openurl
  Title The Importance of Mesozooplankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web Type $loc['typeJournal Article']
  Year 2019 Publication FRONTIERS IN MARINE SCIENCE Abbreviated Journal  
  Volume 6 Issue Pages  
  Keywords  
  Abstract We used extensive ecological and biogeochemical measurements obtained from quasi-Lagrangian experiments during two California Current Ecosystem Long-Term Ecosystem Research cruises to analyze carbon fluxes between the epipelagic and mesopelagic zones using a linear inverse ecosystem model (LIEM). Measurement constraints on the model include C-14 primary productivity, dilution-based microzooplankton grazing rates, gut pigment-based mesozooplankton grazing rates (on multiple zooplankton size classes), Th-234:U-238 disequilibrium and sediment trap measured carbon export, and metabolic requirements of micronekton, zooplankton, and bacteria. A likelihood approach (Markov Chain Monte Carlo) was used to estimate the resulting flow uncertainties from a sample of potential flux networks. Results highlight the importance of mesozooplankton active transport (i.e., diel vertical migration) in supplying the carbon demand of mesopelagic organisms and sequestering carbon dioxide from the atmosphere. In nine water parcels ranging from a coastal bloom to offshore oligotrophic conditions, mesozooplankton active transport accounted for 18-84% (median: 42%) of the total carbon transfer to the mesopelagic, with gravitational settling of POC (12-55%; median: 37%), and subduction (2-32%; median: 14%) providing the majority of the remainder. Vertically migrating zooplankton contributed to downward carbon flux through respiration and excretion at depth and via mortality losses to predatory zooplankton and mesopelagic fish (e.g., myctophids and gonostomatids). Sensitivity analyses showed that the results of the LIEM were robust to changes in nekton metabolic demand, rates of bacterial production, and mesozooplankton gross growth efficiency. This analysis suggests that prior estimates of zooplankton active transport based on conservative estimates of standard (rather than active) metabolism are likely too low.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1084  
Permanent link to this record
 

 
Author Zou, S.; Bower, A.; Furey, H.; Susan Lozier, M.; Xu, X. doi  openurl
  Title Redrawing the Iceland-Scotland Overflow Water pathways in the North Atlantic Type $loc['typeJournal Article']
  Year 2020 Publication Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 1890  
  Keywords  
  Abstract Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.  
  Address Center for Ocean-Atmosphere Prediction Studies, Florida State University, Tallahassee, FL, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('2313002'); strtoupper('P').strtolower('MC7170894') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1105  
Permanent link to this record
 

 
Author Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J. doi  openurl
  Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal J Geophys Res Oceans  
  Volume 124 Issue 12 Pages  
  Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling  
  Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.  
  Address Physical Oceanography Laboratory Ocean University of China, Qingdao China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1097  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)