Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arguez, A.; O'Brien, J.J.; Smith, S.R. url  doi
openurl 
  Title Air temperature impacts over Eastern North America and Europe associated with low-frequency North Atlantic SST variability Type $loc['typeJournal Article']
  Year 2009 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.  
  Volume 29 Issue 1 Pages 1-10  
  Keywords SST; North Atlantic; NAO; AMO; AO; temperature impacts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-8418 ISBN Medium  
  Area Expedition Conference  
  Funding NOAA, AMS, DynCorp Information Systems, FSU, NASA, DOE Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 398  
Permanent link to this record
 

 
Author Brolley, J. M. url  openurl
  Title Effects of ENSO, NAO (PVO), and PDO on Monthly Extreme Temperatures and Precipitation Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords NAO, PDO, ENSO, Climate Variability, Extremes, Stochastic  
  Abstract The El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), and the Polar Vortex Oscillation (PVO) produce conditions favorable for monthly extreme temperatures and precipitation. These climate modes produce upper-level teleconnection patterns that favor regional droughts, floods, heat waves, and cold spells, and these extremes impact agriculture, energy, forestry, and transportation. The above sectors prefer the knowledge of the worst (and sometimes the best) case scenarios. This study examines the extreme scenarios for each phase and the combination of phases that produce the greatest monthly extremes. Data from Canada, Mexico, and the United States are gathered from the Historical Climatology Network (HCN). Monthly data are simulated by the utilization of a Monte Carlo model. This Monte Carlo method simulates monthly data by the stochastic selection of daily data with identical ENSO, PDO, and PVO (NAO) characteristics. In order to test the quality of the Monte Carlo simulation, the simulations are compared with the observations using only PDO and PVO. It has been found that temperatures and precipitation in the simulation are similar to the model. Statistics tests have favored similarities between simulations and observations in most cases. Daily data are selected in blocks of four to eight days in order to conserve temporal correlation. Because the polar vortex occurs only during the cold season, the PVO is used during January, and the NAO is used during other months. The simulated data are arranged, and the tenth and ninetieth percentiles are analyzed. The magnitudes of temperature and precipitation anomalies are the greatest in the western Canada and the southeastern United States during winter, and these anomalies are located near the Pacific North American (PNA) extrema. Western Canada has its coldest (warmest) Januaries when the PDO and PVO are low (high). The southeastern United States has its coldest Januaries with high PDO and low PVO and warmest Januaries with low PDO and high PVO. Although extremes occur during El Nino or La Nina, many stations have the highest or lowest temperatures during neutral ENSO. In California and the Gulf Coast, the driest (wettest) Januaries tend to occur during low (high) PDO, and the reverse occurs in Tennessee, Kentucky, Ohio, and Indiana. Summertime anomalies, on the other hand, are weak because temperature variance is low. Phase combinations that form the wettest (driest) Julies form spatially incoherent patterns. The magnitudes of the temperature and precipitation anomalies and the corresponding phase combinations vary regionally and seasonally. Composite maps of geopotential heights across North America are plot for low, median, and high temperatures at six selected sites and for low, median, and high precipitation at the same sites. The greatest fluctuations occur near the six sites and over some of the loci of the PNA pattern. Geopotential heights tend to decrease (increase) over the target stations during the cold (warm) cases, and the results for precipitation are variable.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 587  
Permanent link to this record
 

 
Author Jardak, M.; Navon, I.M. url  doi
openurl 
  Title Spectral stochastic two-scale convergence method for parabolic PDEs Type $loc['typeJournal Article']
  Year 2011 Publication International Journal for Numerical Methods in Engineering Abbreviated Journal Int. J. Numer. Meth. Engng.  
  Volume 85 Issue 7 Pages 847-873  
  Keywords two-scale convergence method; periodic homogenization; Karhunen–Loève expansions; Wiener polynomial chaos; spectral methods  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-5981 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 374  
Permanent link to this record
 

 
Author Krishnamurthy, V.; Misra, V. url  doi
openurl 
  Title Daily atmospheric variability in the South American monsoon system Type $loc['typeJournal Article']
  Year 2011 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 37 Issue 3-4 Pages 803-819  
  Keywords South American monsoon; ENSO; Atlantic multidecadal oscillation; Intraseasonal oscillation-MJO; NAO  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 300  
Permanent link to this record
 

 
Author Rudzin, J.E.; Morey, S.L.; Bourassa, M.A.; Smith, S.R. url  doi
openurl 
  Title The Influence of Loop Current Position on Winter Sea Surface Temperatures in the Florida Straits Type $loc['typeJournal Article']
  Year 2013 Publication Earth Interactions Abbreviated Journal Earth Interact.  
  Volume 17 Issue 16 Pages 1-9  
  Keywords Air-sea interaction; Florida Straits; Loop Current; Sea surface temperature; CAO; Atlantic sailfish  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1087-3562 ISBN Medium  
  Area Expedition Conference  
  Funding OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 182  
Permanent link to this record
 

 
Author Schoof, J.T.; Pryor, S.C. url  doi
openurl 
  Title An evaluation of two GCMs: simulation of North American teleconnection indices and synoptic phenomena Type $loc['typeJournal Article']
  Year 2006 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.  
  Volume 26 Issue 2 Pages 267-282  
  Keywords GCM evaluation; PNA; NAO; Midwest USA  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-8418 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 440  
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P., Wang, F. url  doi
openurl 
  Title On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn.  
  Volume 51 Issue 11 Pages 6511-6531  
  Keywords NAO-AMOC; CMIP5; NAO index; AMOC index; meridional pressure gradient; magnitude; structure change of the NAO.  
  Abstract The Atlantic meridional overturning circulation (AMOC) plays a fundamental role in the climate system, and long-term climate simulations are used to understand the AMOC variability and to assess its impact. This study examines the basic characteristics of the AMOC variability in 44 CMIP5 (Phase 5 of the Coupled Model Inter-comparison Project) simulations, using the 18 atmospherically-forced CORE-II (Phase 2 of the Coordinated Ocean-ice Reference Experiment) simulations as a reference. The analysis shows that on interannual and decadal timescales, the AMOC variability in the CMIP5 exhibits a similar magnitude and meridional coherence as in the CORE-II simulations, indicating that the modeled atmospheric variability responsible for AMOC variability in the CMIP5 is in reasonable agreement with the CORE-II forcing. On multidecadal timescales, however, the AMOC variability is weaker by a factor of more than 2 and meridionally less coherent in the CMIP5 than in the CORE-II simulations. The CMIP5 simulations also exhibit a weaker long-term atmospheric variability in the North Atlantic Oscillation (NAO). However, one cannot fully attribute the weaker AMOC variability to the weaker variability in NAO because, unlike the CORE-II simulations, the CMIP5 simulations do not exhibit a robust NAO-AMOC linkage. While the variability of the wintertime heat flux and mixed layer depth in the western subpolar North Atlantic is strongly linked to the AMOC variability, the NAO variability is not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 981  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)