Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Coles, V.J.; Stukel, M.R.; Brooks, M.T.; Burd, A.; Crump, B.C.; Moran, M.A.; Paul, J.H.; Satinsky, B.M.; Yager, P.L.; Zielinski, B.L.; Hood, R.R. doi  openurl
  Title Ocean biogeochemistry modeled with emergent trait-based genomics Type $loc['typeJournal Article']
  Year 2017 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 358 Issue 6367 Pages 1149-1154  
  Keywords Atlantic Ocean; Biochemical Phenomena/genetics; Metabolic Networks and Pathways/*genetics; Metagenome; *Metagenomics; Microbial Consortia/*genetics; Models, Biological; Seawater/*microbiology; Transcriptome  
  Abstract Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.  
  Address Horn Point Laboratory, University of Maryland Center for Environmental Science (UMCES), Post Office Box 775, Cambridge, MD 21613, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Funding strtoupper('2').strtolower('9191900') Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 989  
Permanent link to this record
 

 
Author (up) Moroni, D. F. url  openurl
  Title Global and Regional Diagnostic Comparison of Air-Sea Flux Parameterizations during Episodic Events Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Parameterizations, Parameterization, Algorithm, Probability Density, Probability Distribution, Pdf, Drake Passage, Kuroshio, Gulf Stream Ect, Cold Tongue, Indian Ocean, Pacific Ocean, Southern Oceans, Atlantic Ocean, Tropics, Sea-State  
  Abstract Twenty turbulent flux parameterizations are compared globally and regionally with a focus on the differences associated with episodic events. The regional focus is primarily upon the Gulf Stream and Drake Passage, as these two regions contain vastly different physical characteristics related to storm and frontal passages, varieties of sea-states, and atmospheric stability conditions. These turbulent flux parameterizations are comprised of six stress-related parameterizations [i.e., Large and Pond (1981), Large et al. (1994), Smith (1988), HEXOS (Smith et al. 1992, 1996), Taylor and Yelland (2001), and Bourassa (2006)] which are paired with a choice of three atmospheric stability parameterizations ['Neutral' assumption, Businger-Dyer (Businger 1966, Dyer 1967, Businger et al. 1971, and Dyer 1974) relations, and Beljaars-Holtslag (1991) with Benoit (1977)]. Two remaining turbulent flux algorithms are COARE version 3 (Fairall et al. 2003) and Kara et al. (2005), where Kara et al. is a polynomial curve fit approximation to COARE; these have their own separate stability considerations. The following data sets were used as a common input for parameterization: Coordinated Ocean Reference Experiment version 1.0, Reynolds daily SST, and NOAA WaveWatch III. The overlapping time period for these data sets is an eight year period (1997 through 2004). Four turbulent flux diagnostics (latent heat flux, sensible heat flux, stress, curl of the stress) are computed using the above parameterizations and analyzed by way of probability distribution functions (PDFs) and RMS analyses. The differences in modeled flux consistency are shown to vary by region and season. Modeled flux consistency is determined both qualitatively (using PDF diagrams) and quantitatively (using RMS differences), where the best consistencies are found during near-neutral atmospheric stratification. Drake Passage shows the least sensitivity (in terms of the change in the tails of PDFs) to seasonal change. Specific flux diagnostics show varying degrees of consistency between stability parameterizations. For example, the Gulf Stream's latent heat flux estimates are the most inconsistent (compared to any other flux diagnostic) during episodic and non-neutral conditions. In all stability conditions, stress and the curl of stress are the most consistent modeled flux diagnostics. Sea-state is also a very important source of modeled flux inconsistencies during episodic events for both regions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 609  
Permanent link to this record
 

 
Author (up) Shropshire, T.; Li, Y.; He, R. url  doi
openurl 
  Title Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea based on daily cloud-free satellite data reconstructions Type $loc['typeJournal Article']
  Year 2016 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 43 Issue 23 Pages 12,199-12,207  
  Keywords storm; sea surface temperature; surface chl a; northwest Atlantic ocean  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 51  
Permanent link to this record
 

 
Author (up) Zhang, M.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 20 Pages 8541-8555  
  Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC  
  Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 950  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)