Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Brzezinski, M.A.; Krause, J.W.; Bundy, R.M.; Barbeau, K.A.; Franks, P.; Goericke, R.; Landry, M.R.; Stukel, M.R. url  doi
openurl 
  Title Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 120 Issue 7 Pages 4654-4669  
  Keywords phytoplankton; diatoms; iron limitation; nutrient ratios; nutrient stoichiometry; carbon export  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 97  
Permanent link to this record
 

 
Author (up) Kranz, S.A.; Wang, S.; Kelly, T.B.; Stukel, M.R.; Goericke, R.; Landry, M.R.; Cassar, N. url  doi
openurl 
  Title Lagrangian Studies of Marine Production: A Multimethod Assessment of Productivity Relationships in the California Current Ecosystem Upwelling Region Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 125 Issue 6 Pages  
  Keywords gross primary production; long‐ term ecological research; equilibrium inlet mass spectrometry; carbon export; net community production  
  Abstract A multimethod process‐oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long‐Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24‐h in situ measurements (14C and 15NO3 ‐uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high‐resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1113  
Permanent link to this record
 

 
Author (up) Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 52-62  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system KeyWords Plus:ZOOPLANKTON FECAL PELLETS; NORTH PACIFIC-OCEAN; CURRENT SYSTEM; SOUTHERN CALIFORNIA; UNDERWATER GLIDERS; CARBON EXPORT; ZONE; CHLOROPHYLL; STABILITY; EQUATIONS  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 983  
Permanent link to this record
 

 
Author (up) Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume Issue Pages  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014�2015) followed by an El Niño (2015�2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Niño 2016 � and three cruises during El Niño-neutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, mass-specific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention  
  Address Deep-Sea Research Part I  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 966  
Permanent link to this record
 

 
Author (up) Morrow, R.M.; Ohman, M.D.; Goericke, R.; Kelly, T.B.; Stephens, B.M.; Stukel, M.R. url  doi
openurl 
  Title CCE V: Primary production, mesozooplankton grazing, and the biological pump in the California Current Ecosystem: Variability and response to El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 52-62  
  Keywords Carbon export; Fecal pellets; Sinking particles; Interannual variability; Net primary productivity; Eastern boundary upwelling system  
  Abstract Predicting marine carbon sequestration in a changing climate requires mechanistic understanding of the processes controlling sinking particle flux under different climatic conditions. The recent occurrence of a warm anomaly (2014-2015) followed by an El Nino (2015-2016) in the southern sector of the California Current System presented an opportunity to analyze changes in the biological carbon pump in response to altered climate forcing. We compare primary production, mesozooplankton grazing, and carbon export from the euphotic zone during quasi-Lagrangian experiments conducted in contrasting conditions: two cruises during warm years – one during the warm anomaly in 2014 and one toward the end of El Nino 2016 – and three cruises during El Ninoneutral years. Results showed no substantial differences in the relationships between vertical carbon export and its presumed drivers (primary production, mesozooplankton grazing) between warm and neutral years. Mesozooplankton fecal pellet enumeration and phaeopigment measurements both showed that fecal pellets were the dominant contributor to export in productive upwelling regions. In more oligotrophic regions, fluxes were dominated by amorphous marine snow with negligible pigment content. We found no evidence for a significant shift in the relationship between mesozooplankton grazing rate and chlorophyll concentration. However, massspecific grazing rates were lower at low-to-moderate chlorophyll concentrations during warm years relative to neutral years. We also detected a significant difference in the relationship between phytoplankton primary production and photosynthetically active radiation between years: at similar irradiance and nutrient concentrations, productivity decreased during the warm events. Whether these changes resulted from species composition changes remains to be determined. Overall, our results suggest that the processes driving export remain similar during different climate conditions, but that species compositional changes or other structural changes require further attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1021  
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Kahru, M.; Benitez-Nelson, C.R.; Décima, M.; Goericke, R.; Landry, M.R.; Ohman, M.D. url  doi
openurl 
  Title Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 120 Issue 11 Pages 7208-7222  
  Keywords satellite-derived export; carbon export; model algorithms; mesozooplankton grazing; sinking particles; gravitational flux  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 113  
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Ohman, M.D.; Kelly, T.B.; Biard, T. url  doi
openurl 
  Title The Roles of Suspension-Feeding and Flux-Feeding Zooplankton as Gatekeepers of Particle Flux Into the Mesopelagic Ocean in the Northeast Pacific Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords biological pump; carbon export; remineralization length scale; mesozooplankton ecology; pteropods; marine biogeochemistry; sinking particles; marine snow  
  Abstract Zooplankton are important consumers of sinking particles in the ocean's twilight zone. However, the impact of different taxa depends on their feeding mode. In contrast to typical suspension-feeding zooplankton, flux-feeding taxa preferentially consume rapidly sinking particles that would otherwise penetrate into the deep ocean. To quantify the potential impact of two flux-feeding zooplankton taxa [Aulosphaeridae (Rhizaria), and Limacina helicina (euthecosome pteropod)] and the total suspension-feeding zooplankton community, we measured depth-stratified abundances of these organisms during six cruises in the California Current Ecosystem. Using allometric-scaling relationships, we computed the percentage of carbon flux intercepted by flux feeders and suspension feeders. These estimates were compared to direct measurements of carbon flux attenuation (CFA) made using drifting sediment traps and U-238-Th-234 disequilibrium. We found that CFA in the shallow twilight zone typically ranged from 500 to 1000 m mol organic C flux remineralized per 10-m vertical depth bin. This equated to approximately 6-10% of carbon flux remineralized/10 m. The two flux-feeding taxa considered in this study could account for a substantial proportion of this flux near the base of the euphotic zone. The mean flux attenuation attributable to Aulosphaeridae was 0.69%/10 m (median = 0.21%/10 m, interquartile range = 0.04-0.81%) at their depth of maximum abundance (similar to 100 m), which would equate to similar to 10% of total flux attenuation in this depth range. The maximum flux attenuation attributable to Aulosphaeridae reached 4.2%/10 m when these protists were most abundant. L. helicina, meanwhile, could intercept 0.45-1.6% of carbon flux/10 m, which was slightly greater (on average) than the Aulosphaeridae. In contrast, suspension-feeding zooplankton in the mesopelagic (including copepods, euphausiids, appendicularians, and ostracods) had combined clearance rates of 2-81 L m(-3) day(-1) (mean of 19.6 L m(-3) day(-1)). This implies a substantial impact on slowly sinking particles, but a negligible impact on the presumably rapidly sinking fecal pellets that comprised the majority of the material collected in sediment traps. Our results highlight the need for a greater research focus on the many taxa that potentially act as flux feeders in the oceanic twilight zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1066  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)