Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Conlon, K.C.; Kintziger, K.W.; Jagger, M.; Stefanova, L.; Uejio, C.K.; Konrad, C. url  doi
openurl 
  Title Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health Type $loc['typeJournal Article']
  Year 2016 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 13 Issue 8 Pages  
  Keywords *Climate Change/statistics & numerical data; Florida; Forecasting; Humans; Models, Theoretical; Public Health/*trends; United States; adaptation; attributable fraction; climate modeling; project disease burden; public health  
  Abstract There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.  
  Address Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA. konrad@unc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27517942; PMCID:PMC4997490 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 73  
Permanent link to this record
 

 
Author Frumkin, A url  openurl
  Title Predictability of Dry Season Reforecasts over the Tropical South American Region Type $loc['typeManuscript']
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords RSM; CFS; Anomaly Nesting; Climate Model  
  Abstract  
  Address Department of Earth Ocean and Atmospheric Sciences  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 333  
Permanent link to this record
 

 
Author Goto, Y. url  openurl
  Title Improved Vegetation Characterization and Freeze Statistics in a Regional Spectral Model for the Florida Citrus Farming Region Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ensemble Forecast, Climate Model  
  Abstract This study focused on the effective use of a numerical climate model for agriculture in Florida, especially in the citrus farming region of the Florida peninsula, because of the impact of agriculture to Florida's economy. For the analyses of the ensemble, the climate models used in this study were the FSU/COAPS Global Spectral Model and FSU/COAPS Regional Spectral Model (FSU/COAPS RSM) coupled with a land-surface model. The multi-convective scheme method and variable initial conditions were used for the ensembles. Severe freezes impacting agriculture in Florida were associated with some major climate patterns, such as El Niño and Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). In the first part of this study, seasonal ensemble integrations of the regional model were examined for the tendencies of freezes in the Florida peninsula during each ENSO or NAO phase is examined. Mean excess values of minimum temperatures from thresholds on the basis of the Generalized Pareto Distribution (GPD), which represents the extreme data in a dataset, were used to analyze the freezes in the regional model. According to some previous studies, El Niño winters obtain fewer freezes than the other ENSO phases. Although the ensemble comprised only 19 winters, the ensemble found variability patterns in minimum temperatures in each climate phase similar to the findings in the previous studies which were based on the observed data. The FSU/COAPS RSM was coupled with Community Land Model 2.0 (CLM2), to represent the land-surface conditions. Although the coupling improved the temperature forecast of the RSM, it still has a cold bias and simulates smaller diurnal temperature changes than actually occur in southern Florida. Among the prescribed surface data, Leaf Area Index (LAI) for southern Florida in the CLM2 is lower than those observed by MODIS (Moderate Resolution Imaging Spectroradiometer). In the first experiment of this part, the sensitivity of the temperature forecast to the LAI in the climate models was investigated, by modifying the LAI data in the CLM2 based on the monthly MODIS observations. In the second experiment, newly created prescribed datasets of LAI and plant functional types for the CLM2 based on the MODIS observations were applied to the RSM. The substitution increased the diurnal temperature change in southern Florida slightly but almost consistently.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 586  
Permanent link to this record
 

 
Author Hong, S.-Y.; Park, H.; Cheong, H.-B.; Kim, J.-E.E.; Koo, M.-S.; Jang, J.; Ham, S.; Hwang, S.-O.; Park, B.-K.; Chang, E.-C.; Li, H. url  doi
openurl 
  Title The Global/Regional Integrated Model system (GRIMs) Type $loc['typeJournal Article']
  Year 2013 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal Asia-Pacific J Atmos Sci  
  Volume 49 Issue 2 Pages 219-243  
  Keywords Numerical weather prediction; seasonal prediction; general circulation model; regional climate modeling; physics; parameterization; climate modeling; GRIMs; WRF  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1976-7633 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 215  
Permanent link to this record
 

 
Author Michael, J-P url  openurl
  Title ENSO Fidelity in Two Coupled Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords General Circulation Model, El Nino, Coupled Model, Climate Model, ENSO  
  Abstract This study examines the fidelity of the ENSO simulation in two coupled model integrations and compares this with available global ocean data assimilation. The two models are CAM-HYCOM coupled model developed by the HYCOM Consortium and CCSM3.0. The difference between the two climate models is in the use of different ocean general circulation model (OGCM). The hybrid isopycnal-sigma-pressure coordinate ocean model Hybrid Coordinate Ocean Model (HYCOM) replaces the ocean model Parallel Ocean Program (POP) of the CCSM3.0. In both, the atmospheric general circulation model (AGCM) Community Atmosphere Model (CAM) is used. In this way the coupled systems are compared in a controlled setting so that the effects of the OGCM may be obtained. Henceforth the two models will be referred to as CAM-HYCOM and CAM-POP respectively. Comparison of 200 years of model output is used discarding the first 100 years to account for spin-up issues. Both models (CAM-HYCOM and CAM-POP) are compared to observational data for duration, intensity, and global impacts of ENSO. Based on the analysis of equatorial SST, thermocline depth, wind stress and precipitation, ENSO in the CAM-HYCOM model is weaker and farther east than observations while CAM-POP is zonal and extends west of the international dateline. CAM-POP also has an erroneous biennial cycle of the equatorial pacific SSTs. The analysis of the subsurface ocean advective terms highlights the problems of the model simulations.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 576  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Defining the Northeast Monsoon of India Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 147 Issue 3 Pages 791-807  
  Keywords Indian Summer Monsoon, intraseasonal,Climate models, variability, NEM, rainfall  
  Abstract This study introduces an objective definition for onset and demise of the Northeast Indian Monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850hPa winds, surface wind stress, surface ocean currents, and upper ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño�Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 999  
Permanent link to this record
 

 
Author Roads, J. url  doi
openurl 
  Title International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 108 Issue D14 Pages  
  Keywords Regional climate modeling; Brazil; South America  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 843  
Permanent link to this record
 

 
Author Schoof, J.T.; Shin, D.W.; Cocke, S.; LaRow, T.E.; Lim, Y.-K.; O'Brien, J.J. url  doi
openurl 
  Title Dynamically and statistically downscaled seasonal temperature and precipitation hindcast ensembles for the southeastern USA Type $loc['typeJournal Article']
  Year 2009 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol.  
  Volume 29 Issue 2 Pages 243-257  
  Keywords downscaling; seasonal hindcast; regional climate model  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-8418 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 655  
Permanent link to this record
 

 
Author Selman, C.; Misra, V. url  doi
openurl 
  Title Simulating diurnal variations over the southeastern United States Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res. Atmos.  
  Volume 120 Issue 1 Pages 180-198  
  Keywords diurnal variations; southeast; precipitation; temperature; downscaling; regional climate modeling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169897X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 120  
Permanent link to this record
 

 
Author Selman, C.; Misra, V. url  doi
openurl 
  Title The impact of an extreme case of irrigation on the southeastern United States climate Type $loc['typeJournal Article']
  Year 2017 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 48 Issue 3-4 Pages 1309-1327  
  Keywords Regional climate modeling; Irrigation; Diurnal climatology; Diurnal; Southeast United States; Southeast US; Regional model; Agriculture; Anthropogenic influences; Anthropogenic; Climate; Climate change; Regional; Impact; Southeast; Model; Parametrization  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 22  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)