Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brolley, J. M. url  openurl
  Title Experimental Forest Fire Threat Forecast Type $loc['typeManuscript']
  Year 2004 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Forest Fire, El Nino, ENSO, Seasonal Forecast, KBDI, Keetch-Byram Drought Index, Bootstrapping  
  Abstract Climate shifts due to El Niño (warmer than normal ocean temperatures in the tropical Pacific Ocean) and La Niña (cooler than normal) are well known and used to predict seasonal temperature and precipitation trends up to a year in advance. These climate shifts are particularly strong in the Southeastern United States. During the winter and spring months, El Niño brings plentiful rainfall and cooler temperatures to Florida. Recent los Niños occurred in 1997-1998, one of the strongest on record, with another mild El Niño in 2002-2003. Conversely, La Niña is associated with warm and dry winter and spring seasons in Florida. Temperature and precipitation affect wildfire activity; interannual drivers of climate, like ENSO, have an influence on wildfire activity. Studies have shown a strong connection between wildfires in Florida and La Niña, with the more than double the average number of acres burned (O'Brien et al 2002; Jones et al. 1999). While this relationship is important and lends a degree of predictability to the relative activity of future wildfire seasons, human activities such as effective suppression, prescribed burns, and ignition can play an equally important role in wildfire risks. This study forecasts wildfire potential rather than actual burn statistics to avoid complications due to human interactions. This wildfire threat potential is based upon the Keetch-Byram Drought Index (KBDI). The KBDI is well suited as a seasonal forecast medium. It is based on daily temperature and rainfall measurements and responds to changing climate and weather conditions on time scales of days to months, and this index is high during dry warm weather patterns and low during wet cool patterns. The KBDI has been widely used in forestry in the Southeastern United States since its development in the 1970's, with foresters and firefighters have a good level of familiarity with the index and its applications. The KBDI is calculated daily and used as an index by wildfire managers. This study calculates wildfire potential using a statistical method known as bootstrapping. Many datasets contain approximately a half-century of data, and the limited dataset will introduce biases. Bootstrapping can remedy bias by simulating thousands of years of data, which retain the climatology for the past half-century. Bootstrapping preserves the mean but not the variance. By incorporating this method, this study will improve long-term forest fire risks that will become useful for those living or working near forests and assist in managing forests and wildfires. The Southeast Climate Consortium will also be issuing wildfire risk forecast for Florida and parts of Alabama and Georgia based on ENSO phase and the KBDI. Climate information and ENSO predictions are better served by incorporating them with known climate indices that are routinely used in the forestry sector. Wildfire managers and foresters operationally use the KBDI to monitor and predict wildfire activity (O'Brien et al. 2002). Meteorologists at the Florida Division of Forestry have demonstrated the validity of the KBDI as an indicator of potential wildfire activity in Florida (Long 2004). They showed that the value of the KBDI is not as important as the deviation from the monthly average. The wildfire risk forecast is based on the probabilities of KBDI anomalies and will present the probabilities associated with large deviations from the seasonal normal.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 622  
Permanent link to this record
 

 
Author Brolley, J.M.; O'Brien, J.J.; Schoof, J.; Zierden, D. url  doi
openurl 
  Title Experimental drought threat forecast for Florida Type $loc['typeJournal Article']
  Year 2007 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 145 Issue 1-2 Pages 84-96  
  Keywords wildfires; Keetch-Byram drought index; drought; El Nino/Southern oscillation; spectral weather generator  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Funding USDA and NOAA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 422  
Permanent link to this record
 

 
Author Feng, J.; Wu, Z.; Zou, X. url  doi
openurl 
  Title Sea Surface Temperature Anomalies off Baja California: A Possible Precursor of ENSO Type $loc['typeJournal Article']
  Year 2014 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.  
  Volume 71 Issue 5 Pages 1529-1537  
  Keywords ENSO; El Nino  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 127  
Permanent link to this record
 

 
Author Fraisse, C.W.; Breuer, N.E.; Zierden, D.; Bellow, J.G.; Paz, J.; Cabrera, V.E.; Garcia y Garcia, A.; Ingram, K.T.; Hatch, U.; Hoogenboom, G.; Jones, J.W.; O'Brien, J.J. url  doi
openurl 
  Title AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA Type $loc['typeJournal Article']
  Year 2006 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture  
  Volume 53 Issue 1 Pages 13-27  
  Keywords crop models climate variability; decision making; ENSO; El Nino; extension  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1699 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 434  
Permanent link to this record
 

 
Author Izaurralde, R.C.; Rosenberg, N.J.; Brown, R.A.; Legler, D.M.; Tiscareño López, M.; Srinivasan, R. url  doi
openurl 
  Title Modeled effects of moderate and strong 'Los Niños' on crop productivity in North America Type $loc['typeJournal Article']
  Year 1999 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 94 Issue 3-4 Pages 259-268  
  Keywords El Nino; El Nino Southern Oscillation (ENSO); EPIC; corn; wheat  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 530  
Permanent link to this record
 

 
Author Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. url  doi
openurl 
  Title Air-Sea Flux Estimates And The 1997-1998 Enso Event Type $loc['typeJournal Article']
  Year 2002 Publication Boundary-Layer Meteorology Abbreviated Journal Boundary-Layer Meteorology  
  Volume 103 Issue 3 Pages 439-458  
  Keywords bulk formulae; El Nino; La Nina; latent and sensible heat flux; ocean mixed-layer depth; wind stress  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8314 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 495  
Permanent link to this record
 

 
Author Michael, J-P url  openurl
  Title ENSO Fidelity in Two Coupled Models Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords General Circulation Model, El Nino, Coupled Model, Climate Model, ENSO  
  Abstract This study examines the fidelity of the ENSO simulation in two coupled model integrations and compares this with available global ocean data assimilation. The two models are CAM-HYCOM coupled model developed by the HYCOM Consortium and CCSM3.0. The difference between the two climate models is in the use of different ocean general circulation model (OGCM). The hybrid isopycnal-sigma-pressure coordinate ocean model Hybrid Coordinate Ocean Model (HYCOM) replaces the ocean model Parallel Ocean Program (POP) of the CCSM3.0. In both, the atmospheric general circulation model (AGCM) Community Atmosphere Model (CAM) is used. In this way the coupled systems are compared in a controlled setting so that the effects of the OGCM may be obtained. Henceforth the two models will be referred to as CAM-HYCOM and CAM-POP respectively. Comparison of 200 years of model output is used discarding the first 100 years to account for spin-up issues. Both models (CAM-HYCOM and CAM-POP) are compared to observational data for duration, intensity, and global impacts of ENSO. Based on the analysis of equatorial SST, thermocline depth, wind stress and precipitation, ENSO in the CAM-HYCOM model is weaker and farther east than observations while CAM-POP is zonal and extends west of the international dateline. CAM-POP also has an erroneous biennial cycle of the equatorial pacific SSTs. The analysis of the subsurface ocean advective terms highlights the problems of the model simulations.  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 576  
Permanent link to this record
 

 
Author Michael, J.-P.; Misra, V.; Chassignet, E.P. url  doi
openurl 
  Title The El Niño and Southern Oscillation in the historical centennial integrations of the new generation of climate models Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 121-130  
  Keywords ENSO; CMIP5; El Nino; Southern Oscillation; Ocean-atmosphere interaction; Climate; Variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 189  
Permanent link to this record
 

 
Author Murty, V.S.N. url  doi
openurl 
  Title A new technique for the estimation of sea surface salinity in the tropical Indian Ocean from OLR Type $loc['typeJournal Article']
  Year 2004 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 109 Issue C12 Pages  
  Keywords sea surface salinity; tropical Indian Ocean; outgoing longwave radiation; effective oceanic layer; 1997-1998 El Nino event; interannual variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 453  
Permanent link to this record
 

 
Author Podestá, G.; Letson, D.; Messina, C.; Royce, F.; Ferreyra, R.A.; Jones, J.; Hansen, J.; Llovet, I.; Grondona, M.; O'Brien, J.J. url  doi
openurl 
  Title Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience Type $loc['typeJournal Article']
  Year 2002 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 74 Issue 3 Pages 371-392  
  Keywords El Nino-Southern Oscillation; argentine pampas; climate forecasts; climate-adaptive management; linked modeling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 491  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)