Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Arrocha, G. url  openurl
  Title Variability of Intraseasonal Precipitation Extremes Associated with ENSO in Panama Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Extreme Events Central America, Low Level Circulation  
  Abstract Extensive analysis has been conducted over past decades showing the impacts of El Niño-Southern Oscillation (ENSO) on various regions throughout the world. However, these studies have not analyzed data from many stations in Panama, or they have not analyzed long periods of observations. For these reasons, they often miss climatological differences within the region induced by topography, or they do not possess enough observations to adequately study its climatology. Accordingly, the current study focuses on ENSO impacts on precipitation specific to the Isthmus of Panama. Results will be useful for agricultural and water resources planning and Panama Canal operations. Monthly total precipitation data were provided by Empresa de Transmisión Eléctrica S.A., which includes 32 stations with records from 1960 to 2004. The year is split into three seasons: two wet seasons (Early and Late Wet), one dry season (Dry). The country is also divided into regions according to similarities in the stations' climatology and geographic locations. Upper and lower precipitation extremes are associated with one of the three ENSO phases (warm, cold or neutral) to estimate their percentages of occurrences. The differences between each ENSO phases' seasonal precipitation distributions are statistically examined. Statistical analyses show effects of ENSO phases that vary by season and geographical region. Cold and warm ENSO years affect the southwestern half of the country considerably during the Late Wet season. Cold ENSO phases tend to increase rainfall, and the warm phase tends to decrease it. The opposite is true for the Caribbean coast. The Dry season experiences drier conditions in warm ENSO years, and the Early Wet season does not show any statistically significant difference between ENSO years' rainfall distributions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 620  
Permanent link to this record
 

 
Author (up) Engelman, M. B. url  openurl
  Title A Validation of the FSU/COAPS Climate Model Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Crop Models, Skill Scores, Seasonal Prediction, Extreme Events  
  Abstract This study examines the predictability of the Florida State University/Center for Oceanic and Atmospheric Prediction Studies (FSU/COAPS) climate model, and is motivated by the model's potential use in crop modeling. The study also compares real-time ensemble runs (created using persisted SST anomalies) to hindcast ensemble runs (created using weekly updated SST) to asses the effect of SST anomalies on forecast error. Wintertime (DJF, 2 month lead time) surface temperature and precipitation forecasts over the southeastern United States (Georgia, Alabama, and Florida) are evaluated because of the documented links between tropical Pacific SST anomalies and climate in the southeastern United States during the winter season. The global spectral model (GSM) runs at a T63 resolution and then is dynamically downscaled to a 20 x 20 km grid over the southeastern United States using the FSU regional spectral model (RSM). Seasonal, monthly, and daily events from the October 2004 and 2005 model runs are assessed. Seasonal (DJF) plots of real-time forecasts indicate the model is capable of predicting wintertime maximum and minimum temperatures over the southeastern United States. The October 2004 and 2005 real-time model runs both produce temperature forecasts with anomaly errors below 3°C, correlations close to one, and standard deviations similar to observations. Real-time precipitation forecasts are inconsistent. Error in the percent of normal precipitation vary from greater than 100% in the 2004/2005 forecasts to less than 35% error in the 2005/2006 forecasts. Comparing hindcast runs to real-time runs reveals some skill is lost in precipitation forecasts when using a method of SST anomaly persistence if the SST anomalies in the equatorial Pacific change early in the forecast period, as they did for the October 2004 model runs. Further analysis involving monthly and daily model data as well as Brier scores (BS), relative operating characteristics (ROC), and equitable threat scores (ETS), are also examined to confirm these results.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 607  
Permanent link to this record
 

 
Author (up) Perron, M.; Sura, P. url  doi
openurl 
  Title Climatology of Non-Gaussian Atmospheric Statistics Type $loc['typeJournal Article']
  Year 2013 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 26 Issue 3 Pages 1063-1083  
  Keywords Atmospheric circulation; Extreme events; Climate variability; Climatology; Statistics; Time series  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)